

УНИВЕРСАЛЬНЫЙ МИКРОПРОЦЕССОРНЫЙ ДВУХКАНАЛЬНЫЙ ПИД-РЕГУЛЯТОР

МИК-122

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ПРМК.421457.017 РЭ

СОДЕРЖАНИЕ

_		Стр.
1	ОПИСАНИЕ РЕГУЛЯТОРА	
	1.1 Назначение регулятора	
	1.2 Обозначение регулятора	
	1.3 Технические характеристики регулятора	
	1.3.1 Аналоговые входные сигналы	
	1.3.2 Аналоговые выходные сигналы	
	1.3.3 Дискретные входные сигналы	
	1.3.4 Дискретные выходные сигналы	
	1.3.5 Регулятор	9
	1.3.6 Последовательный интерфейс RS-485	
	1.3.7 Электрические данные	
	1.3.8 Корпус. Условия эксплуатации	
	1.4 Состав регулятора	
	1.5 Средства измерения, инструмент и принадлежности	
	1.6 Маркировка и пломбирование	
	1.7 Упаковка	11
_		
2	НАЗНАЧЕНИЕ. ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ	12
3	КОНСТРУКЦИЯ РЕГУЛЯТОРА И ПРИНЦИП РАБОТЫ	13
	3.1 Конструкция регулятора	
	3.2 Передняя панель регулятора	
	3.3 Назначение дисплеев передней панели	
	3.4 Назначение светодиодных индикаторов	
	3.5 Назначение клавиш	
	3.6 Структурная схема регулятора МИК-122	15
	3.7 Принцип работы регулятора МИК-122	
	3.8 Распределение входов-выходов структур регулятора МИК-122	
	3.9 Логика работы дискретных выходов	
	3.10 Принцип работы технологической сигнализации	19
4	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	21
	4.1 Эксплуатационные ограничения при использовании регулятора	21
	4.2 Подготовка регулятора к использованию. Требования к месту установки	
	4.3 Соединение с внешними устройствами. Входные и выходные цепи	21
	4.4 Подключение электропитания блоков	
	4.5 Конфигурация регулятора	
	4.6 Режим РАБОТА	
	4.7 Режим КОНФИГУРИРОВАНИЕ	27
	4.8 Загрузка заводских настроек регулятора	
	4.9 Порядок настройки аналоговых входов и аналогового выхода	
5	КАЛИБРОВКА И ПРОВЕРКА РЕГУЛЯТОРА	32
Ī	5.1 Калибровка аналоговых входов	
	5.2 Линеаризация аналоговых входов AI1 и AI2	36
	5.3 Калибровка аналоговых выходов	
	с.о калгоровка апалоговых выходов	
6	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	30
u	6.1 Общие указания	
	6.2 Меры безопасности	
	6.3 Порядок технического обслуживания	
	о.э порядок технического обслуживания	39
_	VDALIEUME IA TRALICEORTADORALIME	4.
1	ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	
	7.1 Условия хранения регулятора	41
	7.2 Требования к транспортированию регулятора и условия, при которых оно должно	
	осуществляться	41
_		
8	ГАРАНТИИ ИЗГОТОВИТЕЛЯ	41

ПРИЛОЖЕНИЕ А - ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ	42
ПРИЛОЖЕНИЕ Б - ПОДКЛЮЧЕНИЕ РЕГУЛЯТОРА. СХЕМА ВНЕШНИХ СОЕДИНЕНИЙ	43
Приложение Б.1 Подключение аналоговых датчиков с пассивными выходамиПриложение Б.2 Подключение исполнительных устройств к аналоговому выходу АО	44
Приложение Б.3 Подключение дискретных нагрузок к регулятору МИК-122Приложение Б.4 Схема подключения интерфейса RS-485	46
ПРИЛОЖЕНИЕ В - КОММУНИКАЦИОННЫЕ ФУНКЦИИ	49
Приложение В.1 Общие сведенияПриложение В.2 Программно доступные регистры регулятора МИК-122	
Приложение B.3 MODBUS протокол	54
Приложение В.5 Рекомендации по программированию обмена данными с регулятором МИК-122	
ПРИЛОЖЕНИЕ Г - СВОДНАЯ ТАБЛИЦА ПАРАМЕТРОВ РЕГУЛЯТОРА МИК-122	57

Настоящее руководство по эксплуатации предназначено для ознакомления потребителей с назначением, моделями, принципом действия, устройством, монтажом, эксплуатацией и обслуживанием универсального микропроцессорного двухканального ПИД-регулятора МИК-122 (в дальнейшем регулятор МИК-122).

ВНИМАНИЕ!

Перед использованием регулятора, пожалуйста, ознакомьтесь с настоящим руководством по эксплуатации регуляторов МИК-122.

Пренебрежение мерами предосторожности и правилами эксплуатации может стать причиной травмирования персонала или повреждения оборудования!

В связи с постоянной работой по совершенствованию регулятора, повышающей его надежность и улучшающей характеристики, в конструкцию могут быть внесены незначительные изменения, не отраженные в настоящем издании.

Соглашения, принятые в данном руководстве

В наименованиях параметров, на рисунках, при цифровых значениях и в тексте использованы сокращения и аббревиатуры (см. таблицу I), означающие следующее:

Таблица I - Сокращения и аббревиатуры

Аббревиатура (символ)	Полное наименование	Значение
PV или X	Process Variable	Измеряемая величина (контролируемый и
		регулируемый параметр)
SP или W	Setpoint	Заданная точка (задание регулятору)
MV или Y	Manipulated Variable	Манипулируемая переменная, переменная
		представляющая значение управляющего
		воздействия, подаваемого на аналоговый выход
		устройства
Z	External Disturbance	Внешнее возмущающее воздействие
LSP	Local Setpoint	Локальная (внутренняя) заданная точка
T, t	Time	Время, интервал времени
Al	Analogue Input	Аналоговый ввод
DI	Discrete Input	Дискретный ввод
AO	Analogue Output	Аналоговый вывод
DO	Discrete Output	Дискретный вывод

1 Описание регулятора

1.1 Назначение регулятора

- 1.1.1 Регулятор МИК-122 предназначен для измерения двух контролируемых входных физических параметров (температура, давление, расход, уровень и т. п.), обработки, преобразования и отображения их текущих значений на встроенных четырехразрядных цифровых индикаторах;
- 1.1.2 Регулятор формирует выходной аналоговый и (или) импульсный сигнал управления двумя внешними исполнительными механизмами, обеспечивая аналоговое, импульсное, 2-3-х позиционное, или регулирование в режиме override входного параметра по П, ПИ, ПД или ПИД закону в соответствии с заданной пользователем логикой работы и параметрами регулирования;
- 1.1.3 Регулятор формирует сигналы технологической сигнализации, на передней панели имеются индикаторы для сигнализации технологически опасных зон, сигналы превышения (занижения) регулируемых или измеряемых параметров.
- 1.1.4 Регуляторы являются программируемыми средствами измерения электрических величин общего назначения согласно ГОСТ 22261, позволяющие вести локальное, дистанционное, ручное регулирование и дискретное управление.

1.2 Обозначение регулятора

Обозначение при заказе:

МИК-122-AA-BB-C-R-D-U.

Где:

```
АА и ВВ, соответственно код входа 1-го и 2-го каналов:
          01 – унифицированный 0-5 мА
          02 – унифицированный 0-20 мА
          03 – унифицированный 4-20 мА
          04 – унифицированный 0-10 В
          05 – Напряжение 0 ... 75 мВ
          06 – Напряжение 0 ... 200 мВ
          07 – Напряжение 0 ... 2В
          08 – TCM 50M, W<sub>100</sub>=1,428, -50 ... +200°C
          09 – TCM 100M, W<sub>100</sub>=1,428, -50 ... +200°C
          10 – TCM rp.23, -50 ... +200°C
          11 – TC\Pi 50\Pi W<sub>100</sub>=1,391, Pt50, -50 ... +650°C
          12 – ΤCΠ 100Π W<sub>100</sub>=1,391, Pt100, -50 ... +650°C
          13 – ΤСΠ гр.21, -50 ... +650°C
          14 - TXA (K), 0 ... +1300°C
          15 – ТХК (L), 0°...+800°С
16 – ТЖК (J), 0 ... +1100°С
          17 - TXKH (E), 0 ... +850°C
```

Примечание: при заказе регулятора с входными сигналами от термопар ТПП-10, ТПР, ТВР-1 прибор изготавливаются по отдельному заказу и последующая перестройка на другие типы входных сигналов производится только на предприятии-изготовителе.

С - код первого выходного аналогового сигнала:

18 – ΤΠΠ10 (S), 0 ... +1600°C **19** – ΤΠΡ (Β), 0 ... +1800°C **20** – TBP-1 (A-1), 0 ... +2500°C

```
1 – от 0 мА до 5 мА,
```

- 2 от 0 мА до 20 мА,
- 3 от 4 мА до 20 мА,
- 4 от 0 В до 10 В.

R - код второго выходного аналогового сигнала:

- 1 от 0 мА до 5 мА,
- **2** от 0 мА до 20 мА,
- 3 от 4 мА до 20 мА,
- **4** от 0 В до 10 В
- **D** тип выходных дискретных сигналов:
 - **Т** транзисторные выходы.
 - Р релейные выходы,
 - С симисторные выходы,
 - **СР** симисторные выходы (DO1, DO2) и релейные выходы (DO3, DO4).
- **U** напряжение питания:
 - **220** 220В переменного тока,
 - **24** 24В постоянного тока.

Внимание! При заказе регулятора необходимо указывать его полное название, в котором присутствуют типы аналоговых входов, аналогового выхода и напряжение питания.

Например, заказано регулятор: МИК-122-09-03-2-1-Р-220

При этом изготовлению и поставке потребителю подлежит:

- 1) микропроцессорный двухканальный ПИД-регулятор МИК-122,
- 2) Вход аналоговый AI1 "Параметр" код **09** TCM 100M, W₁₀₀=1,428, -50 ... +200°C,
- 3) Вход аналоговый AI2 "Задание" код **03** 4-20 мА, 4) Выход аналоговый AO1 код **2** 0-20мА,
- 5) Выход аналоговый AO2 код **1** 0-5мA,
- 6) Выходы дискретные DO1-DO4 код **Р** релейные выходы
- 7) Напряжение питания код 220 220В переменного тока.

1.3 Технические характеристики регулятора

Основные технические характеристики регулятора МИК-122 отвечают указанным в п. 1.3.1 – 1.3.15.

1.3.1 Аналоговые входные сигналы

Таблица 1.3.1 - Технические характеристики аналоговых входных сигналов

Техническая характеристика	Значение
Количество аналоговых входов	2
Количество аналоговых входов Тип входного аналогового сигнала	Унифицированные (ГОСТ 26.011-80) Постоянный ток: от 0 мА до 5 мА от 0 мА до 20 мА от 4 мА до 20 мА напряжение постоянного тока: от 0 В до 10 В от 0 мВ до 75 мВ от 0 мВ до 200 мВ от 0 в до 2 В Термопреобразователи сопротивлений ДСТУ 2858-94 ТСМ 50М, W ₁₀₀ =1,428, от минус 50°С до плюс 200°С ТСМ 100М, W ₁₀₀ =1,428, от минус 50°С до плюс 200°С ТСМ гр.23, от минус 50°С до плюс 200°С ТСП 50П, W ₁₀₀ =1,391, Pt50, от минус 50°С до плюс 650°С ТСП 100П, W ₁₀₀ =1,391, Pt100, от минус 50°С до плюс 650°С ТСП 100П, W ₁₀₀ =1,391, Pt100, от минус 50°С до плюс 650°С ТСП гр.21, от минус 50 °С до плюс 650°С Термопары по ДСТУ 2837-94 (ГОСТ3044-94, DIN IEC 584-1):
	ТЖК (J), от 0°С до плюс 1100°С ТХК (L), от 0°С до плюс 800°С ТХКн (E), от 0°С до плюс 850°С ТХА (K), от 0°С до плюс 1300°С ТПП10 (S), от 0°С до плюс1600°С ТПР (B), от 0°С до плюс 1800°С
	ТВР-1 (A-1), от 0°С до плюс 2500°С
Разрешающая способность АЦП	16 разрядов
Предел допускаемой основной приведенной	≤ 0,2 %
погрешности измерения входных параметров Точность индикации	0.01 %
Период измерения	0,01 % Не более 0,1 сек
Гальваническая развязка аналоговых входов	Каждый вход гальванически изолирован от других входов и
т альваническая развязка аналоговых входов	саждый вход гальванически изолирован от других входов и остальных цепей, напряжение гальванической развязки не менее 500 В

Примечания.

- 1. Каждый регулятор МИК-122 может быть сконфигурирован на подключение любого типа датчика.
- 2. При заказе входа типа термопара используется датчик термокомпенсации, расположенной с тыльной стороны регулятора. Датчик используется в качестве входа температурной коррекции, компенсации термо-ЭДС свободных концов термопары.

1.3.2 Аналоговые выходные сигналы

AO1 и AO2 - выходные аналоговые сигналы управления внешними исполнительными механизмами (управляющее воздействие) или ретрансмиссия входного сигнала AI1 или AI2.

Таблица 1.3.2 - Технические характеристики аналогового унифицированного выходного сигнала

Техническая характеристика	Значение
Количество аналоговых выходов	2
Тип выходного аналогового сигнала	Унифицированные ГОСТ26.011-80: От 0 мА до 5 мА, Rн ≤ 2000 Ом От 0 мА до 20 мА, Rн ≤ 500 Ом От 4 мА до 20 мА, Rн ≤ 500 Ом От 0 В до 10 В, Rн ≥ 2 кОм
Разрешающая способность ЦАП	AO1 – 16 разрядов AO2 – 12 разрядов
Предел допускаемой основной приведенной погрешности формирования выходного сигнала	AO1 – ≤ 0,2 % AO2 – ≤ 0,4 %
Предел допускаемой дополнительной погрешности, вызванной изменением температуры окружающей среды	AO1 – < 0,2 % / 10 °C AO2 – < 0,4 % / 10 °C
Гальваническая развязка аналогового выхода	Выход гальванически изолированы от входов и остальных цепей, напряжение гальванической развязки не менее 500 В

1.3.3 Дискретные входные сигналы

Таблица 1.3.3 - Технические характеристики дискретных входных сигналов

Техническая характеристика	Значение
Количество дискретных входов	2
Сигнал логического "0" – состояние ОТКЛЮЧЕНО	0-7 В, отрицательной полярности
Сигнал логической "1" – состояние ВКЛЮЧЕНО	18-30 В, отрицательной полярности
Входной ток (потребление по входу)	≤ 10 mA
Гальваническая развязка дискретных входов	Входы связаны попарно и гальванически изолированы от других
·	входов и остальных цепей

Внимание! Если не используются дискретные входа регулятора, то внутренний источник питания можно использовать для питания аналогового датчика с пассивным выходом при подключении к одному из аналоговых входов прибора.

1.3.4 Дискретные выходные сигналы

1.3.4.1 Транзисторный выход

Таблица 1.3.4.1 - Технические характеристики дискретных выходных сигналов. Транзисторный выход

Техническая характеристика	Значение
Количество дискретных выходов	4
Тип выхода	Открытый коллектор (NPN транзистора)
Максимальное напряжение коммутации	≤ 40 В постоянного тока
Максимальный ток нагрузки каждого выхода	≤ 100 mA
Сигнал логического "0"	Разомкнутое состояние транзисторного ключа
Сигнал логической "1"	Замкнутое состояние транзисторного ключа.
Вид нагрузки	Активная, индуктивная
Гальваническая развязка аналоговых входов	Каждый выход гальванически изолирован от других входов и
	остальных цепей, напряжение гальванической развязки не менее 500 В

1.3.4.2 Релейный выход

Таблица 1.3.4.2 - Технические характеристики дискретных выходных сигналов. Релейный выход

Техническая характеристика	Значение
Количество дискретных выходов	4
Тип выхода	Переключающие контакты реле
Максимальное напряжение коммутации	
переменного (действующее значение) или	~220В переменного тока
постоянного тока	24В постоянного тока
Максимальный ток нагрузки каждого выхода	≤8A
Сигнал логического "0"	Разомкнутое состояние контактов реле.
Сигнал логической "1"	Замкнутое состояние контактов реле.
Вид нагрузки	Активная, индуктивная
Гальваническая развязка аналоговых входов	Каждый выход гальванически изолирован от других входов и
	остальных цепей, напряжение гальванической развязки не менее 500 В

1.3.4.3 Оптосимисторный выход

Таблица 1.3.4.3 - Технические характеристики дискретных выходных сигналов. Оптосимисторный выход

Техническая характеристика	Значение
Количество дискретных выходов	2
Тип выхода	Маломощный оптосимистор, встроенный детектор нулевого напряжения фазы позволяет включать нагрузку только при минимальном напряжении на ней (предотвращает создание помех в сети)
Максимальное напряжение коммутации переменного (действующее значение)	Не более 300В переменного тока
Максимальный ток нагрузки каждого выхода	- не более 0,7А - в импульсном режиме частотой 50 Гц с длительностью импульса не более 5 мс – до 1 А - пиковый ток перегрузки с длительностью импульса 100 мкс и частотой 120 имп/с – до 1 А
Сигнал логического "0" Сигнал логической "1"	Отключенное состояние оптосимистора. Включенное состояние оптосимистора.
Вид нагрузки	Активная, индуктивная
Гальваническая развязка аналоговых входов	Каждый выход гальванически изолирован от других входов и остальных цепей, напряжение гальванической развязки не менее 500 В

1.3.5 Регулятор

Таблица 1.3.5 - Технические характеристики регулятора

Техническая характеристика	Значение
Число контуров регулирования	2
Диапазон измирения параметров настройки	
регулятора:	от 000,1 до 050,0
- коэффициент усиления	от 0000 до 6000
- время интегрирования	от 0000 до 6000
- время дифференцирования	
Зона нечуствительности	от 000,0 до 999,9
Структура регулятора	п, пи, пд, пид
(законы регулирования)	Двухпозиционный
	Трехпозиционный
Контролируемые параметры	Измеряемая величина, заданная точка, значение выхода или
	положение исполнительного механизма
Вид балансировки узла задатчика	Статическая, динамическая

1.3.6 Последовательный интерфейс RS-485

Таблица 1.3.6 - Технические характеристики последовательного интерфейса RS-485

Техническая характеристика	Значение
Конфигурации сети	Многоточечная
Количество приборов	32 на одном сегменте
Максимальная длина линии в пределах одного сегмента сети	1200 метров
Количество активных передатчиков	1
Диапазон сетевых адресов	255
Скорость обмена/длина линии связи (зависимость экспоненциальная):	62,5 кбит/с 1200 м 375 кбит/с 300 м 2400 кбит/с 100 м 10000 кбит/с 10 м Примечание. На скоростях обмена свыше 115 кбит/с рекомендуется использовать экранированные витые пары.
Тип приемопередатчиков	Дифференциальный, потенциальный
Вид кабеля	Витая пара, экранированная витая пара
Гальваническая развязка	Интерфейс гальванически изолирован от входов-выходов и остальных цепей
Протокол связи	Modbus режим RTU (Remote Terminal Unit)
Назначение интерфейса	Для конфигурирования регулятора, для использования в качестве удаленного устройства при работе в современных сетях управления и сбора информации (приема-передачи команд и данных)

1.3.7 Электрические данные

Таблица 1.3.7.1 - Технические характеристики электропитания

Техническая характеристика	Значение
Электропитание (подключение к сети):	
- постоянного тока	от 18В до 36В
- переменного тока	от 100В до 242В, 50Гц
Потребляемый ток по питанию 24В	≤ 250 mA
Потребляемая мощность от сети переменного тока 220В	≤ 8,5 BA
Защита данных	EEPROM, сегнетоэлектрическая NVRAM
Подключение	С тыльной стороны регулятора с помощью разьема – клеммы.

Таблица 1.3.7.2 - Технические характеристики внутреннего источника электропитания

Техническая характеристика	Значение
Количество источников питания	2 (если дискретные входа не используются, тогда они используются как второй источник питания)
Электропитание:	21 B ± 1 B
Потребляемый ток по питанию 21В	≤ 25 mA
Подключение	С тыльной стороны регулятора с помощью разьема – клеммы.

1.3.8 Корпус. Условия эксплуатации

Таблица 1.3.8 - Условия эксплуатации

Техническая характеристика	Значение
Тип корпуса	Корпус для утопленного щитового монтажа
Размеры фронтальной рамки	96 х 96 мм
Монтажная глубина	190 мм тах
Вырез на панели	92 ^{+0,8} x 92 ^{+0,8} мм
Крепление корпуса	В электрощитах
Рабочая температура	от минус 40 °C до 70 °C
Температура хранения (предельная)	То же
Климатическое исполнение	исполнение группы 4 согласно ГОСТ 22261, но для работы при
	температуре от минус 40 °C до 70 °C
Атмосферное давление	от 85 до 106,7 кПа
Вибрация	исполнение 5 согласно ГОСТ 22261
Помещение	закрытое, взрыво-, пожаробезопасное.
	Воздух в помещении не должен содержать пыли и примеси
	агрессивных паров и газов, вызывающих коррозию (в частности:
	газов, содержащих сернистые соединения или аммиак).
Положение при монтаже	Любое
Степень защиты	IP30;
Macca	< 0,6 кг

- 1.3.9 По стойкости к механическому воздействию регулятор МИК-122 отвечает исполнению 5 согласно ГОСТ 22261.
- 1.3.10 Среднее время наработки на отказ с учетом технического обслуживания, регламентированного руководством по эксплуатации, не менее чем 100 000 часов.
 - 1.3.11 Среднее время восстановления работоспособности МИК-122 не более 4 часов.
 - 1.3.12 Средний срок эксплуатации не менее 10 лет.
 - 1.3.13 Средний срок хранения 1 год в условиях по группе 1 ГОСТ 15150-69.
- 1.3.14 Изоляция электрических цепей МИК-122 относительно корпуса и между собой при температуре окружающей среды (20 \pm 5) °C и относительной влажности воздуха до 80% выдерживает в течении 1 минуты действие испытательного напряжения синусоидальной формы частотой (50 \pm 1) Гц с действующим значением 1500 В.
- 1.3.15 Минимально допустимое электрическое сопротивление изоляции при температуре окружающей среды (20 ± 5) °C и относительной влажности воздуха до 80% составляет не менее 20 МОм.

1.4 Состав регулятора

Комплект поставки регулятора МИК-122 приведен в таблице 1.4.

Таблица 1.4 - Комплект регулятора МИК-122

Обозначение	Наименование регулятора	Количество
ПРМК.421457.017	ПИД-регулятор многофункциональный микропроцессорный МИК-122	1
ПРМК.421457.017 РЭ	Руководство по эксплуатации (из расчета - 1 экземпляр на любое количество изделий при поставке в один адрес)	1
П3-02	Комплект крепежных зажимных элементов (2 штуки)	1
734-203	Разъем монтажный	1
231-103/026-000	Разъем монтажный	1
734-204	Разъем монтажный	1
734-216	Разъем монтажный	1
231-112/026-000	Разъем монтажный	1
231-131	Рычаг монтажный	1
734-230	Рычаг монтажный	1

1.5 Средства измерения, инструмент и принадлежности

Перечень принадлежностей, которые необходимы для контроля, регулирования, выполнения работ по техническому обслуживанию регулятора, приведены в таблице 1.5 (согласно ДСТУ ГОСТ 2.610).

Таблица 1.5 - Перечень средств измерения, инструмента и принадлежностей, которые необходимы при обслуживании регулятора МИК-122

Наименование средств измерения, инструмента и принадлежностей	Назначение
1 Вольтметр универсальный Щ300	Измерение выходного сигнала и контроль напряжения питания
2 Магазин сопротивлений Р4831	Задатчик сигнала
3 Дифференциальный вольтметр В1-12	Задатчик сигнала и измерение выходного сигнала
4 Мегаомметр Ф4108	Измерение сопротивления изоляции
5 Пинцет медицинский	Проверка качества монтажа
6 Отвертка	Разборка корпуса
7 Мягкая бязь	Очистка от пыли и грязи

1.6 Маркировка и пломбирование

- 1.6.1 Маркировка регулятора выполнена согласно ГОСТ 26828 на табличке с размерами согласно ГОСТ 12971, которая крепится на тыльной стороне корпуса регулятора.
 - 1.6.2 На табличке нанесены такие обозначения:
 - а) товарный знак предприятия-изготовителя;
 - б) наименование регулятора;
 - в) условное обозначение;
 - г) обозначение исполнения;
 - д) порядковый номер регулятора по системе нумерации предприятия-изготовителя;
 - е) год и квартал изготовления;
- 1.6.3 Пломбирование регулятора предприятием-изготовителем при выпуске из производства не предусмотрено.

1.7 Упаковка

- 1.7.1 Упаковка регулятора соответствует требованиям ГОСТ 23170.
- 1.7.2 Регулятор в соответствии с комплектом поставки упаковано согласно чертежам предприятияизготовителя.
- 1.7.3 Регулятор в транспортной таре транспортируется мелкими отправлениями железнодорожным транспортом (крытыми вагонами) или другим видом транспорта.
- 1.7.4 Регулятор подвержено консервации согласно ГОСТ 9.014 для группы III-I, категории и условий хранения и транспортировки 4 (вариант временной внутренней упаковки ВУ-5, вариант защиты ВЗ-10).
- 1.7.5 В качестве потребительской тары применяются картонные коробки из гофрированного картона согласно ГОСТ 7376 и мешки из полиэтиленовой пленки толщиной не менее 0,15 мм согласно ГОСТ 10354.
 - 1.7.6 При упаковке применены амортизационные материалы согласно ГОСТ 5244.

2 Назначение. Функциональные возможности

Регулятор МИК-122 представляет собой новый класс современных универсальных *двухканальных* цифровых регуляторов с аналоговым или импульсным (дискретным) выходом. В своей структуре регулятор МИК-122 содержит *два независимых* канала измерения и два независимых регулятора (*аналоговый*, ПИД-ШИМ регулятор, импульсный ПИД регулятор, 3-х, 2-х позиционный).

Регуляторы применяются для управления технологическими процессами в промышленности. Регулятор МИК-122 позволяет обеспечить высокую точность поддержания значения измеряемого параметра. Отпичительной особенностью регулятора МИК-122 является наличие трехуровневой гальванической изоляции между входами, выходами и цепью питания.

Регуляторы предназначены как для автономного, так и для комплексного использования в АСУТП в энергетике, металлургии, химической, пищевой и других отраслях промышленности и народном хозяйстве.

Регулятор МИК-122 предназначен:

- для измерения двух контролируемых входных физических параметров (температура, давление, расход, уровень и т. п.), обработки, преобразования и отображения их текущих значений на встроенных четырехразрядных цифровых индикаторах;
- регулятор формирует выходной аналоговый и (или) импульсный сигнал управления двумя внешними исполнительными механизмами, обеспечивая аналоговое, импульсное, 2-3-х позиционное, или регулирование в режиме override входного параметра по П, ПИ, ПД или ПИД закону в соответствии с заданной пользователем логикой работы и параметрами регулирования;
- регулятор формирует сигналы технологической сигнализации, на передней панели имеются индикаторы для сигнализации технологически опасных зон, сигналы превышения (занижения) регулируемых или измеряемых параметров.

Структура регулятора МИК-122 посредством конфигурации может быть изменена таким образом, что могут быть решены следующие задачи регулирования:

✓ Двухпозиционного (до четырех каналов - при использовании функции свободно - программируемых дискретных выходов регулятора) или двух, трехпозиционных регуляторов;

✓ Двух независимых регуляторов (ПИД-регулятора с аналоговым выходом и ПИД-регулятора с импульсным выходом или ПИД-ШИМ-регулятора с импульсным выходом) или двух регуляторов в режиме override.

- ✓ Контуров автоматического регулирования с управлением от ЭВМ;
- ✓ Прибора ручного управления импульсным исполнительным механизмом, двухпозиционной или трехпозиционной нагрузкой, с индикацией задающих воздействий;
 - ✓ Индикатора двух физических величин.

Внутренняя программная память регулятора МИК-122 содержит большое количество стандартных функций необходимых для управления технологическими процессами большинства инженерных прикладных задач, например, таких как:

- возможность подключения различных типов датчиков,
- сравнение результата преобразования с уставками минимум и максимум, а также сигнализацию отклонений (технологически опасных зон), выбор типа технологической сигнализации абсолютная или девиационная (зависящая от заданной точки).
 - программная калибровка каналов по внешнему образцовому источнику аналогового сигнала,
 - цифровая фильтрация,
 - произвольное масштабирование шкал измеряемых параметров, линеаризация входных сигналов,
 - извлечение квадратного корня,
 - режимы статической и динамической балансировки,
- мониторинг исправности датчиков (их линий связи или измерительного канала) с системой безопасного управления исполнительными механизмами.

Регулятор представляет собой свободно конфигурируемый компактный прибор. Пользователь, не имеющий знаний и навыков программирования, может просто вызывать и исполнять эти функции путем конфигурации регулятора МИК-122. Регуляторы МИК-122 очень гибкие в использовании и могут быстро и легко, изменив конфигурацию, выполнить большинство встречаемых требований и задач управления технологическими процессами.

Регуляторы МИК-122 конфигурируются через переднюю панель регулятора или через гальванически разделенный интерфейс RS-485 (протокол ModBus), что также позволяет использовать прибор в качестве удаленного контроллера при работе в современных сетях управления и сбора информации.

Параметры конфигурации регулятора МИК-122 сохраняются в энергонезависимой памяти и прибор способен возобновить выполнение задач управления после прерывания напряжения питания. Батарея резервного питания не используется. Регуляторы могут изготавливаться по индивидуальному техническому заданию для выполнения конкретной технологической задачи.

3 Конструкция регулятора и принцип работы

3.1 Конструкция регулятора

Регулятор МИК-122 сконструирован по блочному принципу и включает:

- пластмассовый корпус,
- фронтальный блок передней панели с элементами обслуживания (клавиатурой) и индикации,
- блок задней части с сетевым разъемом и разъемами для подключения внешних входных и выходных цепей.

3.2 Передняя панель регулятора

Для лучшего наблюдения и управления технологическим процессом регулятор МИК-122 оборудован активной четырехразрядной цифровой индикацией для отображения измеряемой величины (дисплей **ПАРАМЕТР** и дисплей **ЗАВДАННЯ**), необходимым количеством клавиш обслуживания и сигнализационных светодиодных индикаторов для различных статусных режимов и сигналов. Внешний вид передней панели регулятора МИК-122 приведен на рисунке 3.1. Габаритные размеры индикатора приведены в приложении А.

Рисунок 3.1 - Внешний вид передней панели регулятора МИК-122

3.3 Назначение дисплеев передней панели

• Дисплей ПАРАМЕТР В режиме РАБОТА индицирует значение выбранной измеряемой величины (I или II, где I - значение первой измеряемой величины, II - значение второй

измеряемой величины).

В режиме КОНФИГУРИРОВАНИЕ индицирует значение выбранного параметра.

• Дисплей ЗАВДАННЯ В режиме РАБОТА индицирует значение заданной точки или значение второй измеряемой величины (когда светятся индикаторы I и II).

В режиме КОНФИГУРИРОВАНИЕ индицирует номер параметра конфигурации.

• Дисплей ВИХІД В режиме РАБОТА индицирует значение управляющего воздействия, подаваемого на аналоговый или импульсный выход устройства или состояние

дискретных входов/выходов.

3.4 Назначение светодиодных индикаторов

• **Индикатор ALM1** Светится, если значение измеряемой величины меньше значения уставки сигнализации отклонения **MIN** или превышает значение уставки технологической сигнализации отклонения **MAX**.

• **Индикатор ALM2** Светится, если значение измеряемой величины меньше значения уставки сигнализации отклонения **MIN** или превышает значение уставки технологической сигнализации отклонения **MAX**.

• Индикатор F Светится, если регулятор управляется с помощью логики дискретных входов

• Индикатор РУ1 Светится, если регулятор находится в ручном режиме управления, и не светится, если регулятор находится в автоматическом режиме управления.

• Индикатор РУ2 Светится, если регулятор находится в ручном режиме управления, и не светится, если регулятор находится в автоматическом режиме управления.

• Индикатор ІНТ Мигает, если происходит передача данных по интерфейсному каналу связи.

• **Индикатор I** Светится, если индицируются параметры 1-го регулятора (вход, задание, выход) на соответственных дисплеях передней панели.

• **Индикатор II** Светится, если индицируются параметры 2-го регулятора (вход, задание, выход) на соответственных дисплеях передней панели.

• Индикаторы I и II Светятся, если выбран дополнительный режим индикации регулятора

• **Индикатор** ▲ Светодиодный индикатор состояния ключа БОЛЬШЕ импульсного или трехпозиционного регулятора. Светится при включенном ключе БОЛЬШЕ.

• **Индикатор** ▼ Светодиодный индикатор состояния ключа МЕНЬШЕ импульсного или трехпозиционного регулятора. Светится при включенном ключе МЕНЬШЕ.

3.5 Назначение клавиш

• Клавиша [Р/А] Каждое нажатие клавиши вызывает переход из автоматического режима работы в режим ручного управления и обратно выбранного регулятора (совместно с нажатием клавиши [戌], для подтверждения выполнения операции перехода).

• **Клавиша [Завд]** Клавиша предназначена для вызова индицируемого значения заданной точки (задания) и для редактирования задания.

 Клавиша [▲]
 Клавиша "больше". При каждом нажатии этой клавиши осуществляется увеличение значений, заданной точки, выходного сигнала управления (управляющего воздействия) или значения изменяемого параметра. При удерживании этой клавиши в нажатом положении увеличение значений происходит непрерывно.

 Клавиша [▼]
 Клавиша "меньше". При каждом нажатии этой клавиши осуществляется уменьшение значений, заданной точки, выходного сигнала управления (управляющего воздействия) или значения изменяемого параметра. При удерживании этой клавиши в нажатом положении уменьшение значений происходит непрерывно.

 Клавиша предназначена для подтверждения выполняемых действий или операций, для фиксации вводимых значений. Например, подтверждение перехода из автоматического режима работы в режим ручного управления и обратно, фиксация ввода измененной заданной точки, подтверждение входа в режим конфигурации, продвижение по уровням конфигурации и т.п.

• Клавиша предназначена для вызова меню конфигурации, а также продвижения по меню конфигурации.
В режиме РАБОТА при нажатии данной клавиши происходит переключение режимов индикации регулятора.

3.6 Структурная схема регулятора МИК-122

Структурная схема регулятора МИК-122 показана на рисунке 3.2

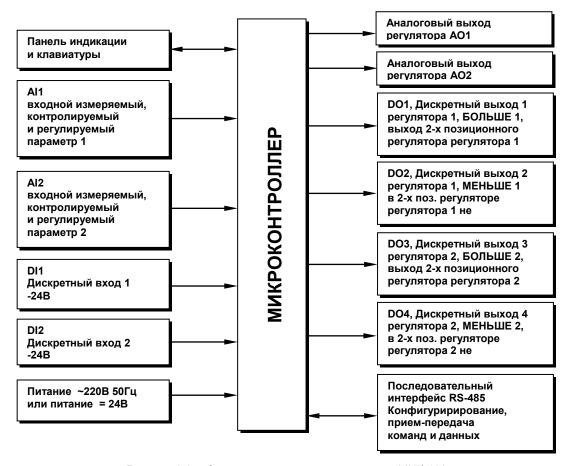


Рисунок 3.2 - Структурная схема регулятора МИК-122

3.7 Принцип работы регулятора МИК-122

Регулятор МИК-122 представляет собой устройство измерения значения двух входных параметров, обработки и преобразования входных сигналов и выдачи управляющих воздействий по двум независимым контурам.

Регулятор МИК-122 работает под управлением современного, высоко интегрированного микроконтроллера RISC архитектуры, изготовленного по высокоскоростной КМОП технологии с низким энергопотреблением. В постоянном запоминающем устройстве располагается большое количество функций для решения задач контроля и регулирования. Посредством конфигурирования пользователь может самостоятельно настраивать регулятор на решение определенных задач.

Регулятор МИК-122 оснащен аналого-цифровым преобразователем, узлами дискретно-цифрового ввода и цифро-дискретного вывода, сторожевыми схемами для контроля циклов работы программы, энергонезависимой памятью EEPROM, NVRAM для сохранения пользовательских параметров конфигурации и данных.

Внутренняя программа регулятора МИК-122 функционирует с постоянным временным циклом. В начале каждого цикла внутренней рабочей программы считываются значения аналоговых и дискретных входов, производится считывание и обработка клавиатуры (подавление дребезга и обнаружение достоверности), прием команд и данных из последовательного интерфейса. При помощи этих входных сигналов осуществляются, в соответствии с запрограммированными функциями и пользовательскими параметрами конфигурации, все расчеты. После этого осуществляется вывод информации на импульсные и дискретные выходы, на индикационные элементы, а так же фиксация вычисленных величин для режима передачи последовательного интерфейса.

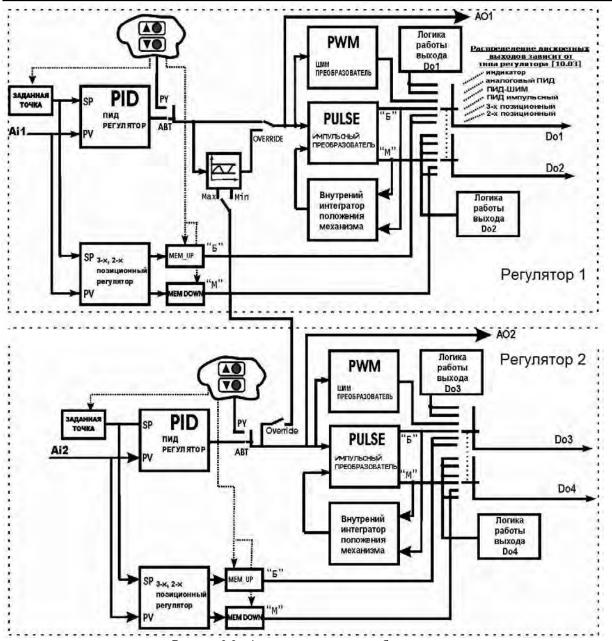


Рисунок 3.3 - Функциональная схема блока регулирования

3.8 Распределение входов-выходов структур регулятора МИК-122

3.8.1 Индикатор

Таблица 3.8.1 - Индикатор

Структура регулятора 1 определяемая параметром СТR1.00	Анало- говый вход Al1	Анало- говый выход AO1	Диск- ретный вход DI1	Диск- ретный выход DO1	ретный выход	Структура регулятора 2 определяемая параметром СТR2.00	Анало- говый вход Al2	Аналого вый выход AO2	Диск- ретный вход DI2	Диск- ретный выход DO3	Диск- ретный выход DO4
0000 – индикатор	Параме тр 1	Ретран- смиссия	Не исп	Своб. прогр.	Своб. прогр.	0000 – индикатор	Параме тр 2	Ретран- смиссия	Не исп.	Своб. прогр.	Своб. прогр.

3.8.2 2-х позиционный регулятор

Таблица 3.8.2 - 2-х позиционный регулятор

<u> Габлица 3.8.2 -</u>	Таблица 3.8.2 - 2–х позиционный регулятор										
Структура	Анало-	Анало-	Диск-	Диск-	Диск-	Структура	Анало-	Аналого	Диск-	Диск-	Диск-
регулятора 1,	говый вход	говый	ретный	ретный	ретный	регулятора 2,	говый вход	вый	ретный	ретный	ретный
определяемая		выход	вход	выход	выход	определяемая		выход	вход	выход	выход
параметром CTR1.00	Al1	AO1	DI1	DO1	DO2	параметром СТR2.00	Al2	AO2	DI2	DO3	DO4
0001 – 2-x	Регули-	Ретран-	Своб.	Выход	Своб.	0001 – 2-x	Регули-	Ретран-	Своб.	Выход	Своб.
позиционный	руемый	смиссия		2-х поз.	прогр.	позиционный	руемый	смиссия		2-х поз.	прогр.
регулятор	параметр1			регулят		регулятор	параметр2			регулят	
				ора						opa	

3.8.3 3-х позиционный регулятор

Таблица 3.8.3 - 3-х позиционный регулятор

Структура	Анало-	Анало-	Диск-	Диск-		Структура	Анало-	Аналого	1 1 -		Диск-
регулятора 1,	говый вход	говый	ретный	ретный	ретныи	регулятора 2,	говый вход	выи	ретный	ретный	ретный
определяемая		выход	вход	выход		определяемая		выход	вход	выход	выход
параметром	Al1	AO1	DI1	DO1	DO2	параметром	Al2	AO2	DI2	DO3	DO4
CTR1.00						CTR2.00					
0002 – 3-x	Регули-	Ретран-	Своб.	Выход	Выход	0002 – 3-x	Регули-	Ретран-	Своб.	Выход	Выход
позиционный	руемый	смиссия	прогр.	Больше	Меньше	позиционный	руемый	смиссия	прогр.	Больше	Меньше
регулятор	параметр1					регулятор	параметр2				

3.8.4 ШИМ - ПИД регулятор

Таблица 3.8.4 - ШИМ – ПИД регулятор

Структура регулятора 1, определяемая параметром СТR1.00	Анало- говый вход Al1	Анало- говый выход AO1	Диск- ретный вход DI1	Диск- ретный выход DO1	ретный выход DO2	Структура регулятора 2, определяема я параметром СТR2.00		Аналого вый выход AO2	Диск- ретный вход DI2	ретный выход	Диск- ретный выход DO4
0003 — ПИД-ШИМ- регулятор	Регули- руемый пара-метр1	Ретран- смиссия		Выход ПИД- ШИМ регуля- тора	прогр.	0003 — ПИД-ШИМ- регулятор	Регули- руемый параметр2	Ретран- смиссия	Своб. прогр.		Своб. прогр.

3.8.5 Аналоговый ПИД регулятор

Таблица 3.8.5 - Аналоговый ПИД регулятор

Структура регулятора 1, определяемая параметром СТR1.00	Анало- говый вход Al1	Анало- говый выход AO1	Диск- ретный вход DI1	Диск- ретный выход DO1	ретный выход	Структура регулятора 2, определяема я параметром СТR2.00		Аналого вый выход AO2	Диск- ретный вход DI2	Диск- ретный выход DO3	Диск- ретный выход DO4
0004 – аналоговый ПИД- регулятор	Регули- руемый параметр1	Выход регуля- тора	Своб. прогр.	Своб. прогр.	прогр.	0004 – аналоговый ПИД-регулятор	Регули- руемый параметр2	Выход регуля- тора	Своб. прогр.	Своб. прогр.	Своб. прогр.

3.8.6 Импульсный ПИД регулятор

Таблица 3.8.6 - Импульсный ПИД регулятор

			<u>, , , , , , , , , , , , , , , , , , , </u>								
Структура	Анало-	Анало-	Диск-	Диск-	Диск-	Структура	Анало-	Аналого	Диск-	Диск-	Диск-
регулятора 1,	говый вход	говый	ретный	ретный	ретный	регулятора 2,	говый вход	вый	ретный	ретный	ретный
определяемая		выход	вход	выход	выход	определяема		выход	вход	выход	выход
параметром	Al1	AO1	DI1	DO1	DO2	я параметром	Al2	AO2	DI2	DO3	DO4
CTR1.00						CTR2.00					
0005 – ПИД-	Регули-	Ретран-	Своб.	Выход	Выход	0005 – ПИД-	Регули-	Ретран-	Своб.	Выход	Выход
импульсный	руемый	смиссия	прогр.	Больше	Меньше	импульсный	руемый	смиссия	прогр.	Больше	Меньше
регулятор	параметр 1					регулятор	параметр2				

Примечания. Сигналы DO1-DO4 являются свободно-программируемыми. Т.е. если какой-либо из сигналов DO1-DO4 не задействован в структуре выбранного типа регулятора, то свободный дискретный выход может в соответствии с выбранной логикой работы и уставками управляться одним из выбранных аналоговых сигналов.

3.9 Логика работы дискретных выходов

Дискретные выходы регулятора МИК-122 имеют свободно конфигурируемую логику работы. Это значит, что пользователь сам определяет назначение того или иного дискретного выхода, если он не задействован для какого-то регулятора.

Внимание: Если дискретный выход задействован в структуре любого регулятора, то для данного дискретного выхода логика управления **не имеет значения**.

Для дискретного выхода, который не используется ПИД-регулятором, источником аналогового сигнала есть измеряемая величина PV. Далее по выбранной логике (**DOT1.00**, **DOT2.00**) обрабатывается и формирует логический ноль или единицу, (сигнал «**Выкл/Вкл**»). То есть, на логике компаратора имеется возможность построить двух-, трех- и многопозиционный регулятор.

Пример работы выходного устройства по логике двухпозиционного регулятора показан на рисунке 3.4 и 3.5.

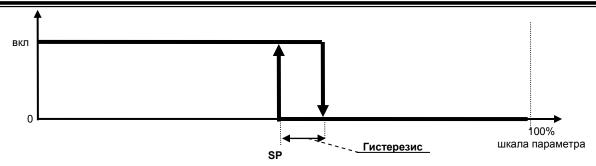


Рисунок 3.4 – Пример работы выходного устройства по логике обратного 2-х позиционного управления п.CTR1.00(CTR2.00)=0001, п. CTR1.03(CTR2.03)=0000

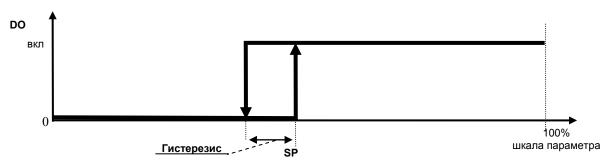


Рисунок 3.5 – Пример работы выходного устройства по логике прямого 2-х позиционного управления п. CTR1.00(CTR2.00)=0001, п. CTR1.03(CTR2.03)=0001

Трехпозиционный регулятор работает в обратном и прямом типе управления регулятора. Когда параметр растет и становится чуть больше заданной точки, то возникает ситуация когда включены два выхода. Это не допустимо когда регулятор управляет реверсивным двигателем. Воизбежения подобной ситуации необходимо использовать параметр CTR1.04(CTR2.04) — зона нечувствительности 3-х позиционного регулятора (мертвая зона). Тогда выходы регулятора будут работать по логике показанной на рисунке 3.6.

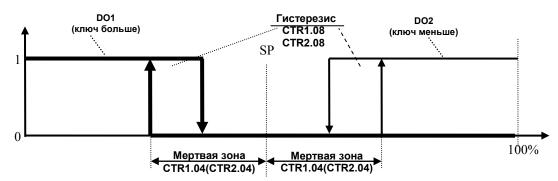


Рисунок 3.6 - График работы дискретных выходов 3-х позиционного регулятора с использованием зоны нечувствительности CTR1.04(CTR2.04)

Два дискретных выхода могут использовать в качестве входного сигнала один и тот же аналоговый вход (AI) и исполнять каждый свою логику роботы.

Выходной сигнал может быть статическим и импульсным (динамическим). Выбор длительности (типа) выходного сигнала производится на уровне **DOT1.02**, **DOT2.02**. Длительность выходного импульса равная 000,0 соответствует статическому выходному сигналу.

Для примера импульсного выхода выберем логику работы дискретного выхода – меньше уставки MIN (DOT1.00=0002), длительность импульсного сигнала - 3 секунды (DOT1.02=003,0). Выходной сигнал при таких параметрах изображен на рисунке 3.7.

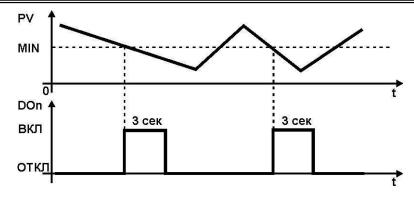


Рисунок 3.7 – График работы дискретного выхода при импульсном типе выходного сигнала

3.10 Принцип работы технологической сигнализации

Для входного параметра PV производится контроль выхода его за границы уставок технологической сигнализации.

Необходимо помнить, что уставки сигнализации должны входить в границы размаха шкалы измеряемой величины.

Технологическая сигнализация используется для сигнализации на индикаторах ALM1 и ALM2 передней панели регулятора, а также для логики работы дискретных выходов как обобщенная технологическая сигнализация (п.м. DOT1.00=[0005]).

Технологическая сигнализация имеет два вида:

- абсолютная сигнализация. Используется когда нужно сигнализировать выход параметра за установленные границы. В таком случае задаются нижние верхние границы технологической сигнализации.
- девиационная сигнализация. Используется когда нужно сигнализировать отклонение технологического параметра от значения заданной точки на значение уставок технологической сигнализации. Пример абсолютной и девиационной сигнализации приведен на рисунках 3.8 и 3.9.

Гистерезис технологической сигнализации задается в пункте меню CTR1.17(CTR2.17). Принцип работы гистерезиса представлен на рисунках 3.8 и 3.9.

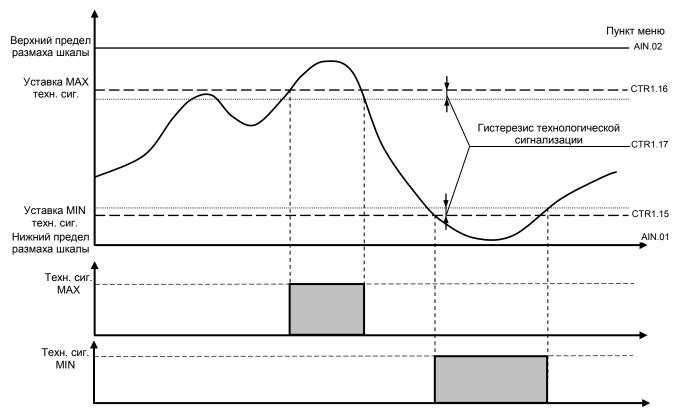


Рисунок 3.8 - График срабатывания технологической сигнализации

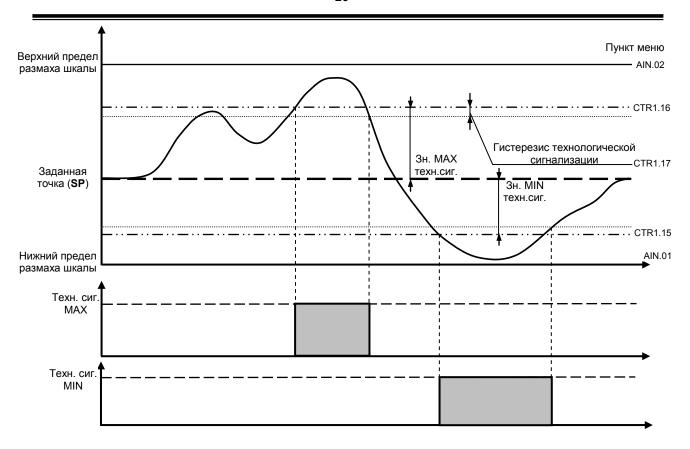


Рисунок 3.9 - График срабатывания девиационной технологической сигнализации

4 Использование по назначению

4.1 Эксплуатационные ограничения при использовании регулятора

- 4.1.1 Место установки регулятор МИК-122 должно отвечать следующим условиям:
- обеспечивать удобные условия для обслуживания и демонтажа;
- температура и относительная влажность окружающего воздуха должна соответствовать требованиям климатического исполнения регулятора;
- окружающая среда не должна содержать токопроводящих примесей, а также примесей, которые вызывают коррозию деталей регулятора;
- напряженность магнитных полей, вызванных внешними источниками переменного тока частотой 50 Гц или вызванных внешними источниками постоянного тока, не должна превышать 400 А/м;
 - параметры вибрации должны соответствовать исполнению 5 согласно ГОСТ 22261.
 - 4.1.2 При эксплуатации регулятора необходимо исключить:
 - попадание токопроводящей пыли или жидкости внутрь регулятора;
 - наличие посторонних предметов вблизи регулятора, ухудшающих его естественное охлаждение.
- 4.1.3 Во время эксплуатации необходимо следить за тем, чтобы подсоединенные к регулятору провода не переламывались в местах контакта с клеммами и не имели повреждений изоляции.

4.2 Подготовка регулятора к использованию. Требования к месту установки

- 4.2.1 Освободите регулятор от упаковки.
- 4.2.2 Перед началом монтажа регулятора необходимо выполнить внешний осмотр. При этом обратить особенное внимание на чистоту поверхности, маркировки и отсутствие механических повреждений.
 - 4.2.3 Регулятор МИК-122 рассчитан на монтаж на вертикальной панели электрощитов.
- 4.2.4 Регулятор должен устанавливаться в закрытом взрывобезопасном и пожаробезопасном помещении. Используйте прибор при температуре и влажности, отвечающих требованиям и условиям эксплуатации указанным в разделе 1.3 настоящей инструкции.
- 4.2.5 Не загромождайте пространство вокруг устройства для нормального теплообмена. Отведите достаточно места для естественной вентиляции устройства. Не закрывайте вентиляционные отверстия на корпусе устройства. Если прибор подвергается нагреванию, для его охлаждения до температуры ниже 70°С используйте вентилятор.
- 4.2.6 Габаритные и присоединительные размеры регулятора МИК-122 приведены в приложении A.

4.3 Соединение с внешними устройствами. Входные и выходные цепи

- 4.3.1 **ВНИМАНИЕ!!!** При подключении регулятора МИК-122 соблюдать указания мер безопасности раздела 6.2 настоящей инструкции.
- 4.3.2 Кабельные связи, соединяющие регулятор МИК-122, подключаются через клеммы соединительных разъемов в соответствии с требованиями действующих "Правил устройства электроустановок".
- 4.3.3 Подключение входов-выходов к регулятору МИК-122 производят в соответствии со схемами внешних соединений, приведенных в приложении Б.
- 4.3.4 При подключении линий связи к входным и выходным клеммам принимайте меры по уменьшению влияния наведенных шумов: *используйте* входные и (или) выходные шумоподавляющие фильтры для регулятора (в т.ч. сетевые), шумоподавляющие фильтры для периферийных устройств, используйте внутренние цифровые фильтры аналоговых входов регулятора МИК-122.
- 4.3.5 Не допускается объединять в одном кабеле (жгуте) цепи, по которым передаются аналоговые, интерфейсные сигналы и сильноточные сигнальные или сильноточные силовые цепи. Для уменьшения наведенного шума отделите линии высокого напряжения или линии, проводящие значительные токи, от других линий, а также избегайте параллельного или общего подключения с линиями питания при подключении к выводам.
- 4.3.6 Необходимость экранирования кабелей, по которым передается информация, зависит от длины кабельных связей и от уровня помех в зоне прокладки кабеля. Рекомендуется использовать изолирующие трубки, каналы, лотки или экранированные линии.

- 4.3.7 Применение экранированной витой пары в промышленных условиях является предпочтительным, поскольку обеспечивает получение высокого соотношения сигнал/шум и защиту от синфазной помехи.
- 4.3.8 Подключайте стабилизаторы или шумоподавляющие фильтры к периферийным устройствам, генерирующим электромагнитные и импульсные помехи (в частности, моторам, трансформаторам, соленоидам, магнитным катушкам и другим устройствам, имеющим излучающие компоненты).

4.4 Подключение электропитания блоков

- 4.4.1 **ВНИМАНИЕ!!!** При подключении электропитания регуляторов соблюдать указания мер безопасности раздела 6.2 настоящего руководства.
- 4.4.2 Для обеспечения стабильной работы оборудования колебания напряжения и частоты питающей электросети должны находиться в пределах технических требований, указанных в разделе 1.3, а для каждого составляющего компонента системы в соответствии с их руководствами по эксплуатации. При необходимости, для непрерывных технологических процессов, должна быть предусмотрена защита от отключения (или выхода из строя) системы подачи электропитания установкой источников бесперебойного питания.
- 4.4.3 Для регуляторов с исполнением для питания от сети переменного тока 220В. Провода электропитания сети переменного тока 220В подключаются разъемным соединителем, расположенным на задней панели регулятора.
- 4.4.4 Устанавливая шумоподавляющий фильтр (сигнальный или сетевой), обязательно уточните его параметры (используемое напряжение и пропускаемые токи). Располагайте фильтр как можно ближе к регулятору.

4.5 Конфигурация регулятора

- 4.5.1 Регуляторы МИК-122 конфигурируются при помощи передней панели регулятора или через гальванически разделенный интерфейс RS-485 (протокол ModBus), что позволяет также использовать прибор в качестве удаленного регулятора при работе в современных сетях управления и сбора информации.
 - 4.5.2 Параметры конфигурации регулятора МИК-122 сохраняются в энергонезависимой памяти.
- 4.5.3 Программа конфигурации регулятора МИК-122 должна быть составлена заранее и оформлена в виде таблицы (см. приложение Г), что избавит пользователя от ошибок при вводе параметров конфигурации.
- 4.5.4 Назначение элементов передней панели, назначение светодиодных индикаторов и клавиш представлено в соответствующих разделах главы 3. Порядок конфигурации изложен ниже в разделе 4.7.

4.6 Режим РАБОТА

4.6.1 Выбор режима работы регулятора

- 4.6.1.1 Прибор переходит на этот уровень всякий раз, когда включается питание. Из этого уровня можно перейти на изменение режимов рабочего уровня или на уровень конфигурации и настроек.
- 4.6.1.2 Обычно этот уровень выбирается во время работы для управления контуром регулирования. В процессе работы можно осуществлять мониторинг, т.е. визуально отслеживать измеряемую величину, заданную точку и значение управляющего воздействия. Кроме того, можно отслеживать на светодиодных индикаторах сигналы технологической сигнализации при превышении верхнего и нижнего пределов отклонения.
- 4.6.1.3 В регуляторе МИК-122 имеется два режима работы управления объектом регулирования: автоматический режим работы и ручной режим работы.
- 4.6.1.4 Режим работы регулятора автоматический или ручной является *запоминаемым состоянием*. После включения питания регулятор находится в том режиме, в котором он находился на момент отключения (рисунок 4.6.1).

Рисунок 4.6.1 – Режимы роботы регулятора МИК-122

4.6.1.5 Автоматический режим работы. Переход на ручной режим работы

<u>Автоматический</u> режим работы

• В автоматическом режиме работы **регулятор 1** управляет объектом регулирования согласно выбранного закона регулирования и с соответствующими настройками пользователя. Тогда будет светится индикатор **I.** Это значит, что регулятор есть в режиме полного отображения параметров 1.

Py1 O • В автоматическом режиме работы индикатор РУ1 на передней панели - погашен.

☞ [P/A]

• Для перехода в ручной режим управления регулятора 1, необходимо нажать клавишу [P/A] на передней панели регулятора.

- Индикатор РУ1 на передней панели начинает мигать.
- Если оператор нажал клавишу [ေ孝] в процессе мигания индикатора РУ (приблизительно 3-4 секунды) произойдет фиксация выбранного режима и регулятор перейдет в режим ручного управления, индикатор РУ1 будет светиться что будет в дальнейшем указывать на ручной режим работы.

Уровень защиты

- Если оператор *не подтверждает* своих действий нажатием клавиши [⋪], то данные действия оператора воспринимаются как неверное действие или случайное переключение режима работы.
- 4.6.1.6 Ручной режим работы. Переход на автоматический режим работы

<u>Ручной режим</u> работы

 В ручном режиме работы оператор с передней панели с помощью клавиш [▲] "больше" и [▼] "меньше", управляет выходом регулятора, тем самым формирует значение управляющего воздействия, подаваемое на исполнительный механизм.

• В ручном режиме работы индикатор РУ1 на передней панели - светится.

❤ ☞ [P/A]

• Для перехода в автоматический режим режим управления необходимо нажать клавишу [Р/А] на передней панели регулятора.

• Индикатор РУ1 на передней панели начинает мигать, если оператор нажал клавишу [ኞ] в процессе мигания индикатора РУ1 (приблизительно 3-4 секунды) – произойдет фиксация выбранного режима и регулятор 1 перейдет в режим автоматического управления, индикатор РУ1 погаснет — что будет в дальнейшем указывать на автоматический режим работы.

Уровень защиты • Если оператор *не подтверждает* своих действий нажатием клавиши [♯], то данные действия оператора воспринимаются как неверное действие или случайное переключение режима работы.

4.6.2 Изменение значения заданной точки

- 4.6.2.1 При включении регулятора МИК-122 устанавливается режим РАБОТА. Регулятор работает в дополнительном режиме индикации: на дисплей **ПАРАМЕТР** выводится значение первой измеряемой величины, на дисплей **ЗАВДАННЯ** выводится значение второй измеряемой величины, а на дисплей **ВИХІД** выводится состояние дискретных входов/выходов регулятора. Чтобы увидеть значение заданной точки регулятора 1 нужно нажатием клавиши *МЕНЮ* добиться свечения только индикатора **I**, тогда заданную точку можно увидеть на дисплее **ЗАВДАННЯ**.
- 4.6.2.2 В регуляторах МИК-122 имеется только внутренняя заданная точка (задание), используемая в автоматическом режиме управления. Данные заданные точки устанавливаются пользователем для каждого регулятора в отдельности.
- 4.6.2.3 Заданная точка изменяется с передней панели регулятора с помощью клавиш **[Завд]**. Значения заданных точек являются *запоминаемыми значениями*. После включения питания регулятор начинает работу с тем значением заданной точки, которое было на момент отключения.
 - 4.6.2.4 Для изменения значения заданной точки (задания)

или РУ2

- **ЗАВДАННЯ**015.0
- ***** [▲] *****
- **☞** [ଐ]

Уровень защиты

- регулятор должен находится в автоматическом режиме управления, о чем свидетельствует погашенный индикатор **РУ1** для регулятора 1 и **РУ2** для регулятора 2.
- кратковременным нажатием клавиши **МЕНЮ** добиться свечения индикатора **I** или **II** соответственно для регулятора 1 или регулятора 2. Таким образом осуществляется переключение между регулятора. Тогда нужно нажать кнопку **[Завд]**.
- На передней панели регулятора начинают мигать дисплей ЗАВДАННЯ. В момент мигания дисплея ЗАВДАННЯ на него выводится значение заданной точки заданного регулятора. На данном этапе при мигающем дисплее ЗАВДАННЯ возможно изменение значения индицируемой заданной точки выбранного регулятора.
- С передней панели с помощью клавиш [▲] "больше" и [▼] "меньше", установить необходимое значение заданной точки, индицируемой на дисплее **ЗАВДАННЯ**.
- Если оператор нажал клавишу [�] в процессе мигания дисплея **ЗАВДАННЯ** регулятор перейдет на режим управления с новым значением заданной точки.
- ••• Если оператор не подтверждает своих действий нажатием клавиши [ॳ] в процессе мигания дисплея ЗАВДАННЯ (приблизительно 3-4 секунды), то данные действия оператора воспринимаются как неверное действие или случайное изменение значения.

Режимы изменения и переключения заданной точки. Статическая и динамическая балансировка

Очень важным для нормальной работы регуляторов является наличие в них *безударного (плавного)* переключения или изменения заданной точки. Переключение или изменение заданной точки регулятора MИК-122 происходит в случаях:

- переключение регулятора с ручного режима работы на автоматический;
- изменение значения внутренней заданной точки с передней панели прибора или по интерфейсу;
- переключение с локального режима работы в каскадный режим работы и наоборот.

Изменение (или переключение) заданной точки регулятора обеспечивается с помощью статической или динамической балансировки узла задатчика регулятора.

В зависимости от значений параметра конфигурации [CTR1.03, CTR2.03] – статическая или динамическая балансировки задания в регуляторе МИК-122 есть разные режимы статической и динамической балансировки:

- **1 режим**: [CTR1.03, CTR2.03] ≠0 динамическая балансировка,
- **2 режим**: [CTR1.03, CTR2.03] =0 статическая балансировка.

Функциональная схема работы балансировок показана на рисунке 4.6.2. Функции режимов статической и динамической балансировки показаны в таблице 4.6.1.

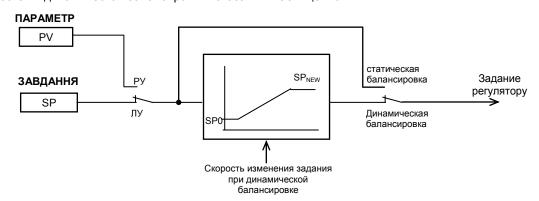


Рисунок 4.6.2 – Функциональная схема балансировок регулятора МИК-122

Примечание. На схеме условно показано положение переключателей для автоматического режима работы регулятора и динамической балансировки.

Таблица 4.6.	1 - Фун	нкции режим	ов балансировок регулятора МИК-122					
	кимы сировок	Значение параметров						
	Режимы балансиров	[CTR1.03, CTR2.03]	Динамика изменения заданной точки					
Переключение режима работы	1	1	При переключении задание начинает изменятся от значения входа AI1 до установленного значения задания со скоростью балансировки					
РУЧНОЙ-АВТОМАТ	2	0	При переключении SP= Al1					
Изменение внутренней заданной	1	1	При изменении задание начинает изменятся от его предыдущего значения до установленного значения со скоростью балансировки					
точки (с передней панели или по интерфейсу)	2	0	При изменении задание мгновенно меняется от его предыдущего значения до установленного					
Переключение с внутренней рабочей	1	При переключении задание начинает изменятся от его предыдущего до установленного значения со скоростью балансировки						
точки на внешнюю и наоборот	2	0	При переключении задание мгновенно меняется от его предыдущего значения до установленного нового.					

Примечание. Если значение : [CTR1.03, CTR2.03], то значение скорости динамической балансировки устанавливается в пределах [000,1; 999,9] тех.ед./мин.

4.6.3 Изменение управляющего воздействия

РУ1 или РУ2 • 4.6.3.1 Для изменения управляющего воздействия регулятор должен находиться в ручном режиме управления. Если регулятор находится в автоматическом режиме, его необходимо перевести в ручной режим управления. Индикатор **РУ1** (для регулятора 1) на передней панели светится. Выбран ручной режим управления.

☞ [P/A1]

РУ1 или РУ2

***** [▲]

ВИХІД

4.6.3.2 Для того, чтобы осуществить управление выходами регулятора, необходимо, оставаясь в ручном режиме с помощью клавиш [▲] "больше" и [▼] "меньше", управляет дискретными выходами регулятора, тем самым формирует управляющее воздействие, подаваемое на исполнительный механизм. Таким же образом можно изменять в ручном режиме роботы регулятора, значение выходной ячейки ПИД регулятора которое подается дальше на формирование дискретных выходов или на аналоговый выход, что в свою очередь будет изменять значение сигнала аналогового выхода (при аналоговом регуляторе).

4.6.3.3 Значение выходного сигнала в % (в зависимости от выбранной структуры регулятора) индицируется значение на дисплее **ВИХІД**:

- выходного аналогового сигнала,
- значение выдаваемой мощности на выходные ключи БОЛЬШЕ-МЕНЬШЕ,
- 4.6.3.4 При изменении значения управляющего воздействия после первого нажатия любой из клавиш [▲] "больше" или [▼] "меньше" начинает мигать дисплей ВИХІД, либо загораются светодиодные индикаторы ▲ или ▼, указывая тем самым оператору какой параметр (сигнал) в данный момент изменяется.

1) Управление выходами регулятора 1, для типов регулятора: 2-х позиционный (п. CTR1.00=0001 – 1-й регулятор и п. CTR2.00=0001 – 2-й регулятор)

[▲]
 ВИХІД
 on

- При нажатии клавиши [▲] "больше" *включается* дискретный выход БОЛЬШЕ1 (DO1) о чем свидетельствует свечение на передней панели светодиода ▲ .

[▲]

- При нажатии клавиши [▼] "меньше" *выключается* дискретный выход БОЛЬШЕ1 (DO1) о чем свидетельствует погасший на передней панели светодиод Δ .
- Дискретный выход МЕНЬШЕ1 (DO2) в 2-х позиционном регуляторе не используется.
- 2) Управление выходами регулятора 1, для типов регулятора: 3-х позиционный (п. CTR1.00=0002 – 1-й регулятор и п. CTR2.00=0002 – 2-й регулятор)

- При нажатии клавиши **[▲]** "больше" *включается* дискретный выход БОЛЬШЕ1 **ВИХІД** (DO1) о чем свидетельствует свечение на передней панели светодиода **▲**.

- При отпускании клавиши [▲] "больше" *выключается* дискретный выход БОЛЬШЕ1 (DO1) на передней панели светодиод △ гаснет.

uР

- При нажатии клавиши **[▼]** "меньше" включается дискретный выход МЕНЬШЕ1 (DO2) о чем свидетельствует свечение на передней панели светодиода **▼** .
- При отпускании клавиши [▼] "меньше" выключается дискретный выход МЕНЬШЕ1 (DO2) на передней панели светодиод гаснет ∇.

⊔ Р - включается д	дискретный выход БОЛЬШЕ
🛘 🖺 - включается р	дискретный выход БОЛЬШЕ 🔲 🗲 🗜 выключается дискретный выход БОЛЬШЕ
О ІІ	индикации.
• 1	• При повторном нажатии клавиши О регулятор снова перейдет в основной режим
	DI1 DI2 DO1 DO2 DO3 DO4
	выключено
	ВИХІД
• I	вид. дисплей ПАРАМЕТР – значение входа AI1, дисплей ЗАВДАННЯ – значение входа AI2, дисплей ВИХІД – состояние дискретных входов/выходов регулятора (см. ниже).
• I	дисплей ПАРАМЕТР – значение входа AI1, дисплей ЗАВДАННЯ – значение входа AI2, дисплей ВИХІД – состояние дискретных выходов DO1 і DO2(d 0, d 1, d 10, d 1). При установленном значении параметра (SYS.04=0002) дополнительная панель имеет вид:
	• При нажатии клавиши О происходит переключение панели на дополнительный режим индикации. При установленном значении параметра (SYS.04=0001) дополнительная панель имеет вид:
О ІІ	дисплей ПАРАМЕТР – значение входа AI1, дисплей ЗАВДАННЯ – задание регулятора, дисплей ВИХІД – значение выхода регулятора.
• 1	• Основной режим индикации: При установленном значении параметра (SYS.04=0000) панель индикации постоянно имеет вид:
4.6.4 Режимь	ы индикации регулятора
	светодиод. Δ - дискретный выход МЕНЬШЕ2 (DO4), в 2-х позиционном регуляторе 2 не используется, светодиод ∇ .
	Соответствие выходов и индикаторов выходных сигналов регулятора 2: - дискретный выход БОЛЬШЕ2 (DO3), выход 2-х позиционного регулятора 2,
	аналогично, но по нажатию клавиши [Ŭ] на передней панели необходимо добиться свечения только индикатора ■ II.
	 4) Управление выходами регулятора 2: Для 2-го регулятора изменения управляющего воздействия выполняется
☞ [▼] ▼	- При нажатии клавиши [▼] "меньше" включается дискретный выход МЕНЬШЕ1 (DO2) о чем свидетельствует свечение на передней панели светодиода ▼ При отпускании клавиши [▼] "меньше" выключается дискретный выход МЕНЬШЕ1 (DO2) на передней панели светодиод гаснет ▼.
▲ △	(DO1) о чем свидетельствует свечение на передней панели светодиода ▲. - При отпускании клавиши [▲] "больше" <i>выключается</i> дискретный выход БОЛЬШЕ1 (DO1) на передней панели светодиод △ гаснет.
☞ [▲]	3) управление выходами регулятора 1, для типов регулятора. Импульсный (п. CTR1.00=0005 – 1-й регулятор и п. CTR2.00=0005 – 2-й регулятор) - При нажатии клавиши [▲] "больше" <i>включается</i> дискретный выход БОЛЬШЕ1
	от эправление выходани регулитора т, дли типов регулитора.

4.7 Режим КОНФИГУРИРОВАНИЕ

- С помощью этого режима вводят параметры и константы регулятора, параметры сигнализации отклонений, параметры фильтра, параметры задания типа входа, типа управления, вида заданной точки, сетевого обмена, калибровки.
- Параметры разделены по группам, каждая из которых называется "уровень". Каждое заданное значение (элемент настройки) в этих уровнях называется "параметром". Параметры, используемые в регуляторе МИК-122, сгруппированы в следующие 24 уровней и представлены на диаграмме см. рисунок 4.7.2. Индикация значения параметров конфигурации и их номеров указаны на рисунке. 4.7.1.

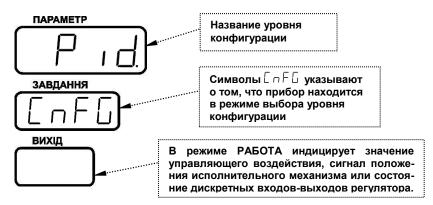


Рисунок 4.7.1 - Индикация значения параметров конфигурации и их номеров.

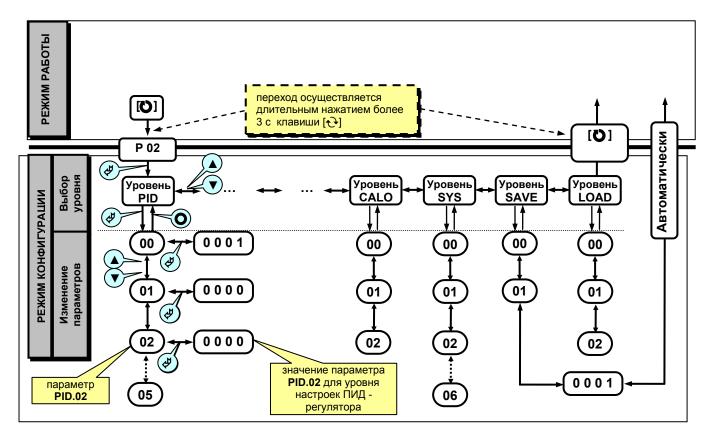


Рисунок 4.7.2 - Диаграмма режима конфигурации и настроек.

4.7.1 Переход в режим конфигурации и настроек

Переход в режим конфигурации и настроек осуществляется из режима РАБОТА длительным, более 3-х секунд, нажатием клавиши [**்**].

После этого на дисплей ПАРАМЕТР выводится меню ввода пароля: «Р 00».

ВНИМАНИЕ!

Если пароль введен не верно – прибор перейдет в *режим РАБОТА*. Если пароль введен верно - то прибор перейдет в *режим КОНФИГУРАЦИИ*. Режим конфигурации отличается от режима робота тем, что в данном режиме на дисплее ЗАВДАННЯ выводятся символы $\Box \cap F \Box$ а значения уровня конфигурации выводятся на дисплей параметр.

4.7.2 Назначение уровней конфигурации

Таблица 4.7.1 - Индикация номера уровня конфигурации

Таблица 4.7.1 - Индикация номера уровня конфигурации Назначение УРОВНЯ	Название	Индикация
Настройка параметров ПИД регулятора	PID	P .d.
Настройка параметров блока преобразования аналогового входного сигнала AI1	AIN1	Rinl
Настройка параметров блока преобразования аналогового входного сигнала AI2	AIN2	A 102
Настройка параметров аналогового выхода АО1	AOT1	Roti
Настройка параметров аналогового выхода АО2	AOT2	Aot2
Конфигурация входного устройства DI	DIN	d 10
Конфигурация выходного устройства DO1	DOT1	dot I
Конфигурация выходного устройства DO2	DOT2	dot2
Конфигурация выходного устройства DO3	DOT3	dot3
Конфигурация выходного устройства DO4	DOT4	do
Настройка параметров регулятора 1	CTR1	[Fr I
Настройка параметров регулятора 2	CTR2	[F-5
Абсциссы (Х1) опорных точек линеаризации	LNRX1	Lnul
Ординаты (У1) опорных точек линеаризации	LNRY1	
Абсциссы (X2) опорных точек линеаризации	LNRX2	
Ординаты (У2) опорных точек линеаризации	LNRY2	Ln42
Калибровка аналогового входа AI1	CLI1	
Коррекция аналогового входа AI1	COR1	
Калибровка аналогового входа AI2	CLI2	[L 15
Коррекция аналогового входа Al2	COR2	[0-2
Калибровка аналогового выхода АО1	CLO1	[Lol
Калибровка аналогового выхода АО2	CLO2	[[-2
Общие параметры	SYS	595
Сохранение параметров	SAVE	5AuE
Загрузка параметров	LOAD	LoAd

[•] Для выбора уровня конфигурации параметров необходимо поочередно нажать клавиши [▲] или [▼]. При каждом нажатии клавиши [ေ≱] происходит переход в выбранный уровень конфигурации

4.7.3 Выбор параметров

- Для выбора параметров на каждом уровне необходимо нажать клавишу [ေ孝] (рисунок 4.7.3). При каждом нажатии клавиши [-孝] происходит переход к следующему параметру.
- Если нажать клавишу [�] на последнем параметре, дисплей вернется к первому параметру текущего уровня.

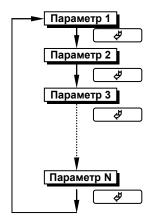


Рисунок 4.7.3 - Диаграмма выбора параметров на каждом уровне

4.7.4 Фиксирование настроек

- Чтобы изменить настройки параметров или установки, пользуйтесь клавишами [▲] или [▼], а затем нажмите клавишу [섇]. В результате настройка будет зафиксирована.
 - Необходимо помнить, что фиксация изменений происходит только по клавише [#].
- Если в режиме **КОНФИГУРИРОВАНИЕ** был вызван параметр для модификации, и не нажималась ни одна из клавиш в течение около 2-х минут, регулятор перейдет в режим **РАБОТА**. Даже если параметр был модифицирован и не нажималась клавиша [♣], то в течение около 2-х минут, регулятор перейдет в режим **РАБОТА** и изменение *не будет зафиксировано*.
- При переходе на другой уровень с помощью клавиши [�] параметр и настройка, измененные до перехода без нажатия клавиши [�], не фиксируются.
- Необходимо помнить, что после проведения изменения параметров необходимо произвести запись в энергонезависимую память (см. раздел 4.7.5), в противном случае введенная информация не будет сохранена при отключении питания регулятора.

4.7.5 Разрешение конфигурирования регулятора по сети ModBus. Запись параметров в энергонезависимую память. Загрузка параметров из энергонезависимой памяти.

Конфигурирование регулятора производится как с передней панели регулятора, так и по протоколу ModBus (RTU). Через интерфейс конфигурирование производится с помощью программного приложения МИК-конфигуратор (распространяется бесплатно) или через SCADA систему.

Для того чтобы избежать не санкционированного изменения параметров конфигурации через интерфейс существует *уровень защиты* доступа к регистрам конфигурации. Запретить или разрешить доступ к этим регистрам можно с верхнего уровня, а также в меню конфигурации регулятора.

Разрешения конфигурирования по сети ModBus разрешается на верхнем уровне записью в регистр 32 значения «1». Если в этом регистре находится «0», то конфигурирование на верхнем уровне запрещено.

С передней панели регулятора разрешение программирования осуществляется на уровне конфигурации LOAD при выборе параметра LOAD.00=0001.

Необходимо помнить, что после загрузки конфигурации по сети, необходимо сделать запись параметров в энергозависимой памяти.

Запись параметров в энергонезависимую память производится следующим образом:

- 1) произвести модификацию всех необходимых параметров.
- 2) установить значение параметра SAVE.01 = 0001.
- 3) нажать клавишу [҂].
- 4) на дисплее **ПАРАМЕТР** появятся символы "5 β \cup ξ ", указывая о том, что происходит операция записи в энергонезависимую память.
- 5) после указанных операций будет произведена запись всех модифицированных параметров в энергонезависимую память. После проведения записи параметров прибор перейдет в режим РАБОТА. После записи параметр SAVE.01 автоматически устанавливается в 0000.

Для загрузки параметров настроек пользователя (установка значений по-умолчанию) необходимо:

- 1) установить значения параметра LOAD.01=0001,
- 2) нажать клавишу [♥],
- 3) на дисплее **ПАРАМЕТР** появятся символы "ப 5 [г", указывая о том, что происходит операция загрузки пользовательских настроек.
- 4) после указанных операций будут загружены все пользовательские настройки. После загрузки параметр LOAD.01 автоматически устанавливается в 0000.

4.8 Загрузка заводских настроек регулятора

Для загрузки параметров настройки предприятия изготовителя (установка заводских значений по умолчанию) необходимо:

- 1) установить значения параметра LOAD.02=0001;
- 2) нажать клавишу [�];
- 3) на дисплее **ПАРАМЕТР** появятся символы "FREE", указывая о том, что происходит операция загрузки заводских настроек;
- 4) после указанных операций будут загружены все заводские настройки. После загрузки параметр LOAD.02 автоматически устанавливается в 0000.

Необходимо помнить, что после загрузки настроек необходимо произвести запись параметров в энергонезависимую память (см. раздел 4.7.5), в противном случае загруженная информация не будет сохранена при отключении питания регулятора.

4.9 Порядок настройки аналоговых входов и аналогового выхода

При настройке и перестройке с одного типа входного сигнала на другой тип, необходимо выполнить следующее:

- установить значение параметра, соответствующее типу входного сигнала,
- установить положение перемычек на модуле универсальных входов в положение согласно выбранного типа входного сигнала (таблица 4.9.1, рисунок 4.9.1).

Таблица 4.9.1 - Типы входных сигналов, и положения перемычек

Тип входного сигнала	Код входа при заказе регулятора	Параметр меню конфигурации	универса	ремычек на модуле пльных входов ис.4.9.1)
		Аналоговый вход Al1		
0-5 мА	01	AIN1.00=0001	JP1 [1-2], [7-8]	J1 [3-4], J3 [5-6]
0-20 мА, Rвх=100 Ом	02	AIN1.00=0001	JP1 [1-2], [5-6]	J1 [3-4], J3 [5-6]
4-20 мА, Rвх=100 Ом	03	AIN1.00=0001	JP1 [1-2], [5-6]	J1 [3-4], J3 [5-6]
0-10В, Rвх=25 кОм	04	AIN1.00=0001	JP1 [2-4], [5-7]	J1 [3-4], J3 [5-6]
0-75 мВ	05	AIN1.00=0001	JP1 [1-2], [5-7]	J1 [3-4], J3 [1-2]
0-200 мВ	06	AIN1.00=0001	JP1 [1-2], [5-7]	J1 [3-4], J3 [3-4]
0-2 B	07	AIN1.00=0001	JP1 [1-2], [5-7]	J1 [3-4], J3 [5-6]
TCM 50M, -50 +200°C	80	AIN1.00=0003	JP1 [1-2], [5-7]	J1 [1-2], J3 [3-4]
TCM 100M, -50 +200°C	09	AIN1.00=0004	JP1 [1-2], [5-7]	J1 [1-2], J3 [3-4]
TCM гр.23, -50 +180°С	10	AIN1.00=0005	JP1 [1-2], [5-7]	J1 [1-2], J3 [3-4]
ТСП 50П, Pt50, -50 +650°С	11	AIN1.00=0006	JP1 [1-2], [5-7]	J1 [1-2], J3 [3-4]
ТСП 100П, Pt100, -50 +650°С	12	AIN1.00=0007	JP1 [1-2], [5-7]	J1 [1-2], J3 [3-4]
ТСП гр.21, -50 +650°С	13	AIN1.00=0008	JP1 [1-2], [5-7]	J1 [1-2], J3 [3-4]
ТЖК (J), 0 +1100°C	16	AIN1.00=0011	JP1 [1-2], [5-7]	J1 [3-4], J3 [1-2]
TXK (L), 0°+800°C	15	AIN1.00=0012	JP1 [1-2], [5-7]	J1 [3-4], J3 [1-2]
ТХКн (E), 0 +850°C	17	AIN1.00=0013	JP1 [1-2], [5-7]	J1 [3-4], J3 [1-2]
TXA (K), 0 +1300°C	14	AIN1.00=0014	JP1 [1-2], [5-7]	J1 [3-4], J3 [1-2]
ТПП10 (S), 0 +1600°С	18	AIN1.00=0015	JP1 [1-2], [5-7]	J1 [3-4], J3 [1-2]
ТПР (B), 0 +1800°C	19	AIN1.00=0016	JP1 [1-2], [5-7]	J1 [3-4], J3 [1-2]
TBP-1 (A-1), 0 +2500°C	20	AIN1.00=0017	JP1 [1-2], [5-7]	J1 [3-4], J3 [1-2]
())		Аналоговый вход Al2		
0-5 мА Rвх=400 Ом	01	AIN2.00=0000	JP2 [1-2], [7-8]	J2 [3-4], J4 [5-6]
0-20 MA, RBX=100 OM	02	AIN2.00=0000	JP2 [1-2], [5-6]	J2 [3-4], J4 [5-6]
4-20 MA, RBX=100 OM	03	AIN2.00=0000	JP2 [1-2], [5-6]	J2 [3-4], J4 [5-6]
0-10B, Rвx=25 кОм	04	AIN2.00=0000	JP2 [2-4], [5-7]	J2 [3-4], J4 [5-6]
0-75 MB	05	AIN2.00=0000	JP2 [1-2], [5-7]	J2 [3-4], J4 [1-2]
0-200 MB	06	AIN2.00=0000	JP2 [1-2], [5-7]	J2 [3-4], J4 [3-4]
0-2 B	07	AIN2.00=0000	JP2 [1-2], [5-7]	J2 [3-4], J4 [5-6]
TCM 50M, -50 +200°C	08	AIN2.00=0002	JP2 [1-2], [5-7]	J2 [1-2], J4 [3-4]
TCM 100M, -50 +200°C	09	AIN2.00=0003	JP2 [1-2], [5-7]	J2 [1-2], J4 [3-4]
TCM rp.23, -50 +180°C	10	AIN2.00=0004	JP2 [1-2], [5-7]	J2 [1-2], J4 [3-4]
ТСП 50П, Pt50, -50 +650°С	11	AIN2.00=0005	JP2 [1-2], [5-7]	J2 [1-2], J4 [3-4]
ТСП 100П, Pt100, -50 +650°С	12	AIN2.00=0006	JP2 [1-2], [5-7]	J2 [1-2], J4 [3-4]
ТСП гр.21, -50 +650°С	13	AIN2.00=0007	JP2 [1-2], [5-7]	J2 [1-2], J4 [3-4]
ТЖК (J), 0 +1100°C	16	AIN2.00=0011	JP2 [1-2], [5-7]	J2 [3-4], J4 [1-2]
TXK (L), 0°+800°C	15	AIN2.00=0012	JP2 [1-2], [5-7]	J2 [3-4], J4 [1-2]
ТХКн (E), 0 +850°С	17	AIN2.00=0012	JP2 [1-2], [5-7]	J2 [3-4], J4 [1-2]
TXA (K), 0 +1300°C	14	AIN2.00=0014	JP2 [1-2], [5-7]	J2 [3-4], J4 [1-2]
ТПП10 (S), 0 +1600°C	18	AIN2.00=0014 AIN2.00=0015	JP2 [1-2], [5-7]	J2 [3-4], J4 [1-2]
ТПР (B), 0 +1800°С	19	AIN2.00=0015 AIN2.00=0016	JP2 [1-2], [5-7]	J2 [3-4], J4 [1-2]
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20	AIN2.00=0017	JP2 [1-2], [5-7]	J2 [3-4], J4 [1-2]
TBP-1 (A-1), 0 +2500°C	20	AIN2.00-0017	JFZ [1-2], [3-1]	JZ [J-4], J4 [1-2]

Примечания.

- 1. Смещение входного сигнала 4-20мА устанавливается программно.
- 2. Характеристики типов входных сигналов приведены в разделе 1.3.
- 3. Порядок калибровки входных аналоговых сигналов приведен в разделе 5.

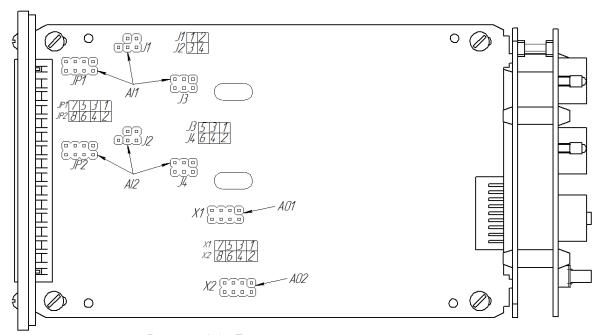


Рисунок 4.9.1 – Положение перемычек на плате входов

Диапазон аналоговых выходов АО1 и АО2, настраивается перемычками X1и X2 (см. рисунок 4.9.1) на модуле универсальных входов/выходов. Типы выходного сигнала и соответствующие положения перемычек приведены в таблице 4.9.2.

Таблица 4.9.2 – Положения перемычек для разных типов выходных сигналов

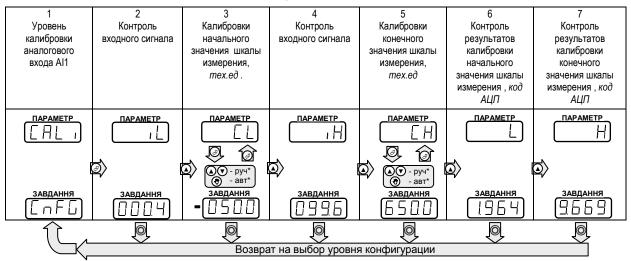
rassiana iroiz	Com pacisan mande cantocian cacitaries
Диапазон выходного сигнала	Положение перемычек на плате
От 0 мА до 5 мА, Rн ≤ 500 Ом	[2-4], [7-8]
От 0 мА до 20 мА, Rн ≤ 500 Ом	[2-4], [5-6]
От 4 мА до 20 мА, Rн ≤ 500 Ом	[2-4], [5-6]
От 0 В до 10 В, Rн ≥ 2 кОм	[1-2], [3-4]

5 Калибровка и проверка регулятора

Калибровка регулятора осуществляется:

- На заводе-изготовителе при выпуске регулятора
- Пользователем:
 - при смене типа датчика
 - при подготовке к поверке (калибровке).

5.1 Калибровка аналоговых входов


5.1.1 Порядок калибровки унифицированных входов

В режиме конфигурации установите параметры соответствующие:

- Типу шкалы аналогового входа
- Типу аналогового входа
- Положение децимального разделителя
- Нижний предел размаха шкалы
- Верхний предел размаха шкалы

После подготовки регулятора к операции калибровки (конфигурации параметров AIN1.00-AIN1.03(AIN2.00-AIN2.03), установления соответствующих перемычек на плате процессора) производится калибровка в последовательности, представленной в таблице 5.1.1:

Таблица 5.1.1 – Последовательность калибровки аналогового входа

^{* -} клавишами ▲ ▼ производится ручная калибровка, а клавишей 🤻 - автоматическая калибровка

5.1.2 Порядок калибровки входов для подключения датчиков с выходным сигналом постоянного тока

- 1. В меню конфигурации установить выбранный тип датчика (AIN1.00), нижний и верхний предел размаха шкалы (AIN1.01 и AIN1.02) и положение децимального разделителя (AIN1.03). Подключить к аналоговому входу AI регулятора МИК-122 образцовый источник постоянного тока согласно схемы подключения представленной на рис. Б.2. Выбрать уровень калибровки первого аналогового входа CLI1.
- 2. Режим контроля входного сигнала для калибровки начального значения шкалы измерения. Выбор осуществляется нажатием клавиши [♣] с индикацией IL на дисплее ПАРАМЕТР. Задать значение входного сигнала 0 мА (или 4 мА), в зависимости от типа сигнала, и проконтролировать на дисплее ЗАВДАННЯ сигнал АЦП, который будет соответствовать нижнему пределу (АІ). Если значение входного сигнала находится в диапазоне от -005.0% до +025.0%, то нажатием клавиши [▲] перейти в режим калибровки нижнего придела шкалы CL. Если значение аналогового входа выходит за указанный диапазон, то калибровка не может быть проведена и при попытке ее проведения на дисплее ЗАВДАННЯ появится сообщение Err.C. В этом случае следует проверить подключения входного сигнала, установки перемычек на плате регулятора, а также тип выбранного датчика в пункте AIN1.00 и еще раз проконтролировать входной сигнал.
- 3. Режим калибровки начального значения шкалы измерения.
 Выбор осуществляется нажатием клавиши [▲] с индикацией СL на дисплее ПАРАМЕТР. Возможны два варианта калибровки:
- *ручная* калибровка осуществляется нажатием клавиш [▲] или [▼] контролируя значения измеряемой переменной на дисплее ПАРАМЕТР

- автоматическая осуществляется нажатием клавиши [♥]. Поочередное мигание индикаторов "MIN"-"MAX" свидетельствует о переходе в режим автоматической калибровки, которую можно отменить повторным нажатием клавиши [♥] или выполнить нажатием клавиши [♥], о чем будет свидетельствовать установившееся начальное значение и прекратится мигание "MIN"-"MAX". При этом в параметре AI зафиксируется значение нижнего предела сигнала АЦП.
 - 4. Режим контроля сигнала для калибровки конечного значения шкалы измерения.

Выбор осуществляется клавишей [♣] с индикацией IH на дисплее ПАРАМЕТР. Задать значение входного сигнала 5 мА (или 20 мА) в зависимости от типа сигнала и проконтролировать на дисплее ЗАВДАННЯ сигнал АЦП, который будет соответствовать верхнему пределу (АІ_н). Если это значение находится в диапазоне от 090.0% до +110.0%, то нажатием клавиши [▲] перейти в режим калибровки конечного значения шкалы CH. Если значение аналогового входа выходит за указанный диапазон, то калибровка не может бить проведена и при попытке ее проведения на дисплее ЗАВДАННЯ появится сообщение Err.C. В этом случае следует проверить подключения входного сигнала, на плате регулятора, а также тип выбранного датчика в пункте AIN1.00 и еще раз проконтролировать входной сигнал в пункте IH.

5. Режим калибровки конечного значения шкалы измерения.

Калибровка производится аналогично п.3., с установившимся конечным значением. При этом в параметре $AI_{\rm H}$ (регистр 199) фиксируется значение верхнего предела сигнала ALIII.

6. Режим контроля параметров калибровки.

Выбор осуществляется клавишей [▲] с индикацией соответственно L — контроль нижнего предела сигнала АЦП, Н — контроль верхнего предела сигнала АЦП. При этом контролируемые параметры калибровки должны находится в диапазоне указанном в таблице 5.1.2 для данного типа датчика.

- 7. Нажатием клавиши **[Ŭ]** вернутся в меню конфигурации регулятора и произвести запись параметров калибровки (см. раздел 4.7.5), в противном случае введенная информация не будет сохранена при отключении питания регулятора.
 - 8. Аналогично произведите калибровку аналогового входа AI2.

Необходимо помнить, что после проведения калибровки необходимо произвести запись параметров в энергонезависимую память, в противном случае введенная информация не будет сохранена при отключении питания регулятора.

ЗАМЕЧАНИЯ ПО ОПЕРАЦИЯМ КАЛИБРОВКИ

В процессе ручной калибровки не требуется точного равенства сигналов 0% и 100% диапазона. Например, можно проводить калибровку для сигналов 2% и 98% диапазона. Важно лишь то, чтобы по цифровому индикатору установить значение, максимально близкое к установленному значению входного сигнала.

Для повышения точности измерения входных аналоговых сигналов допускается калибровку производить для всей цепи преобразования сигнала с учетом вторичных преобразователей сигналов.

Например, для входной цепи: *датчик* — *преобразователь* — *регулятор МИК-122* источник образцового сигнала подключается вместо датчика, а операция калибровки входного сигнала производится на регуляторе МИК-122.

5.1.3 Порядок калибровки входов для подключения датчиков термометров сопротивления

Порядок калибровки входов для подключения датчиков термометров сопротивления ТСМ 50М:

- 1. В параметрах конфигурации, AIN1 установить: Градировочная характеристика аналогового входа AI1 AIN1.00 = 0003
- 2. Подключить магазин сопротивлений МСР-63 (или аналогичный прибор с аналогичными характеристиками) к входу AI1 вместо подключаемого датчика термопреобразователя сопротивления согласно схеме внешних соединений (см. приложение Б.1).
- 3. На магазине сопротивлений установить значение сопротивления для выбранного типа датчика **39,22 Ом**, соответствующее начальному значению. Нажать клавишу [*∀*]. См. таблицу 5.1.2.
- 4. В режиме конфигурации установите параметр CL " Калибровка начального значения шкалы измерения ". Нажимая клавиши [▲] или [▼] установите на дисплее значение, соответствующее значению нижнего предела шкалы при калибровке "-50,0°C". Нажмите клавишу [Џ].
 - 5. Выбрать параметр СН " Калибровка конечного значения шкалы измерения ".
- 6. На магазине сопротивлений установите конечное значение сопротивления при калибровке для выбранного типа датчика **92,77 Ом**.

7. Нажимая клавиши [▲] или [▼] установите на дисплее значение, соответствующее конечному значению шкалы при калибровке "200,0°С". Нажмите клавишу [Џ].

8. Режим контроля параметров калибровки.

Выбор осуществляется клавишей [▲] с индикацией соответственно L — контроль нижнего предела сигнала АЦП, Н — контроль верхнего предела сигнала АЦП. При этом контролируемые параметры калибровки должны находится в диапазоне указанном в таблице 5.1.2 для данного типа датчика.

5.1.4 Калибровка аналогового входа для термоэлектрических преобразователей

Для термопар при калибровке установить тип термопары. К клеммам калибрируемого аналогового входа подключить калибратор напряжения, например дифференциальный вольтметр В1-12 или аналогичный прибор с аналогичными характеристиками. Далее калибровать аналоговой вход аналогично термометрам сопротивления, устанавливая начальные и конечные значения напряжений, которые соответствуют начальному и конечному значению шкалы выбранной термопары (см. таблицу 5.1.3).

5.1.5 Таблица диапазонов минимальных и максимальных значений аналогового сигнала в коде АЦП

Таблица 5.1.2 – Диапазоны минимальных и максимальных значений аналогового сигнала в коде АЦП

Код входа	Тип датчика		а Значения входного сигнала АЦП (отображаются на уровне калибровки аналогового входа CLI1(CLI2) и параметрах AIN1.09(AIN2.09) и AIN1.10(AIN2.10))		
			Минимальное	Максимальное	
		от 0 мА до 5 мА	1.400 – 2.400	14.50 – 21.00	
0001	Пинейная	от 0 мА до 20 мА	1.400 – 2.400	14.50 – 21.00	
		от 4 мА до 20 мА	4.000 - 5.000	14.50 – 21.00	
		от 0 В до10 В	1.400 – 2.400	14.50 – 21.00	
	풀	от 0 В до 2 В	1.400 – 2.400	14.50 – 21.00	
	5	от 0мВ до 75 мВ	1.400 – 2.400	18.30 – 21.00	
		от 0мВ до 200 мВ	1.400 – 2.400	13.00 – 14.50	
		от 0 мА до 5 мА	1.400 – 2.400	14.50 – 21.00	
	ая	от 0 мА до 20 мА	1.400 – 2.400	14.50 – 21.00	
	₹	от 4 мА до 20 мА	4.000 - 5.000	14.50 – 21.00	
0002	Квадратичная	от 0 В до10 В	1.400 – 2.400	14.50 – 21.00	
	l ä	от 0 В до 2 В	1.400 – 2.400	14.50 – 21.00	
	Ba,	от 0мВ до 75 мВ	1.400 – 2.400	18.30 – 21.00	
	~	от 0мВ до 200 мВ	1.400 – 2.400	13.00 – 14.50	
0003	TCN	И 50M	1.500 – 2.500	4.800 - 6.000	
0004	TCN	И 100M	3.900 - 4.900	10.40 – 11.60	
0005	TCN	<i>I</i> Гр.23	1.700 – 2.700	4.800 - 5.900	
	ТСГ	1 50∏	1.600 - 2.600	9.200 - 10.50	
0006	Pt50, $\alpha = 0.00390$		1.600 - 2.600	9.200 - 10.50	
	Pt50	$0, \alpha = 0.00392$	1.600 - 2.600	9.200 – 10.50	
	ТСГ	1 100Π	4.000 - 5.000	19.30 – 20.70	
0007	Pt100, $\alpha = 0.00390$		4.000 - 5.000	19.30 – 20.70	
	Pt100, $\alpha = 0.00392$		4.200 - 5.200	19.30 – 20.70	
8000	ТСГ	1 Гр.21	1.400 – 2.400	8.400 - 9.700	
		от 0 мА до 5 мА	1.400 – 2.400	14.50 – 21.00	
	Тая	от 0 мА до 20 мА	1.400 – 2.400	14.50 – 21.00	
	äH	от 4 мА до 20 мА	4.000 - 5.000	14.50 – 21.00	
0009	Линеаризованная	от 0 В до10 В	1.400 – 2.400	14.50 – 21.00	
	abı	от 0 В до 2 В	1.400 – 2.400	14.50 – 21.00	
	手	от 0мВ до 75 мВ	1.400 – 2.400	18.30 – 21.00	
	⊏	от 0мВ до 200 мВ	1.400 – 2.400	13.00 – 14.50	
0011	ТЖІ	K (J)	1.400 – 2.400	15.90 – 17.90	
0012	TXK (L)		1.400 – 2.400	16.40 – 17.90	
0013	TXKH (E)		1.400 – 2.400	16.20 – 17.90	
0014	TXA (K)		1.400 – 2.400	13.20 – 14.60	
0015		110 (S)	1.400 – 2.400	5.200 - 6.400	
0016	ТПР		1.400 – 2.400	4.500 - 5.700	
0017		P (A-1)	1.400 – 2.400	9.100 – 10.30	
		мпенсации	0 – 0.100	0.500 - 1.000	

5.1.6 Таблица типов датчиков и рекомендуемые пределы калибровки

Таблица 5.1.3 - Типы датчиков и рекомендуемые пределы калибровки

Код входа	Тип датчика, диапазон входного сигнапа	Градировочная характеристика и НСХ	Предельные индицируемые значения при калибровке регулятора	Предельные значения входного сигнала при калибровке регулятора	
Параметр	сигнала			Начал. значение	Конечное значение
0001	От 0 мА до 5 мА От 0 мА до 20 мА От 4 мА до 20 мА От 0В до 10 В От 0В до 2 В От 0мВ до 75мВ От 0мВ до 200мВ	Линейная	От 0,0 % до 100,0 % или в установленных технических единицах*	0 MA 0 MA 4 MA 0 B 0 B 0 MB 0 MB	5 MA 20 MA 20 MA 10 B 2 B 75 MB 200 MB
0002	От 0 мА до 5 мА От 0 мА до 20 мА От 4 мА до 20 мА От 0В до 10 В От 0В до 2 В От 0мВ до 75мВ От 0мВ до 200мВ	Квадратичная (Вход калибруется как линейный, затем устанавливается квадратичная шкала)	От 0,0 % до 100,0 % или в установленных технических единицах*	0 MA 0 MA 4 MA 0 B 0 B 0 MB 0 MB	5 MA 20 MA 20 MA 10 B 2 B 75 MB 200 MB
0003	TCM	50M, W ₁₀₀ =1,428	От минус 50,0 °C до плюс 200,0 °C	39,225 Ом	92,775 Ом
0004	TCM	100M, W ₁₀₀ =1,428	От минус 50,0 °C до плюс 200,0 °C	78,450 Ом	185,550 Ом
0005	TCM	Гр.23	От минус 50,0 °C до плюс 200,0 °C	41,710 Ом	98,160 Ом
	ТСП	50Π, W ₁₀₀ =1,391	От минус 50,0 °C до плюс 650,0 °C	40,000 ом	166,615 OM
0006	Pt	Pt50, $\alpha = 0.00390$	От минус 50,0 °C до плюс 650,0 °C	40,025 Ом	166,320 OM
	Pt	Pt50, $\alpha = 0.00392$	От минус 50,0 °C до плюс 650,0 °C	39,975 Ом	166,910 Ом
	ТСП	100Π, W ₁₀₀ =1,391	От минус 50,0 °C до плюс 650,0 °C	80,000 Ом	333,230 OM
0007	Pt	Pt100, α = 0,00390	От минус 50,0 °C до плюс 650,0 °C	80,050 Ом	332,640 Ом
	Pt	Pt100, α = 0,00392	От минус 50,0 °C до плюс 650,0 °C	79,950 Ом	333,820 OM
8000	ТСП	Γp.21, W ₁₀₀ =1,391	От минус 50,0 °C до плюс 650,0 °C	36,800 Ом	153,300 Ом
0009	От 0 мА до 5 мА От 0 мА до 20 мА От 4 мА до 20 мА От 0В до 10 В От 0В до 2 В От 0мВ до 75мВ От 0мВ до 200мВ	Линеаризованная (Вход калибруется как линейный, затем устанавливается линеаризованная шкала, см. раздел 5.2)	От 0,0 % до 100,0 % или в установленных технических единицах	0 MA 0 MA 4 MA 0 B 0 B 0 MB 0 MB	5 MA 20 MA 20 MA 10 B 2 B 75 MB 200 MB
0010	Термопара	Линеаризованная Вход калибруется как линейный, затем устанавливается линеаризованная шкала, см. раздел 5.2)	диапазон термопары		
0011	Термопара ТЖК (J)	ТЖК (Ј)	От 0°С до плюс 1100°С	0 мВ	63,792 мВ
0012	Термопара ТХК (L)	TXK (L)	От 0°С до плюс 800°С	0 мВ	66,442 мВ
0013	Термопара ТХКн (E)	ТХКн (Е)	От 0°С до плюс 850°С	0 мВ	64,922 мВ
0014	Термопара ТХА (K)	TXA (K)	От 0°С до плюс 1300°С	0 мВ	52,410 мВ
0015	Термопара ТПП10 (S)	ТПП10 (S)	От 0°С до плюс 1600°С	0 мВ	16,777 мВ
0016	Термопара ТПР (B)	ТПР (В)	От 0°С до плюс 1800°С	0 мВ	13,591 мВ
0017	Термопара ТВР (A-1)	TBP (A-1)	От 0°С до плюс 2500°С	0 мВ	33,647 мВ

5.1.7 Коррекция показаний датчика термокомпенсации

Датчик термокомпенсации (вход температурной компенсации холодного спая термопар) установлен на тыльной стороне регулятора.

С помощью параметра **SYS.06** производится коррекция значения температуры датчика термокомпенсации. В данном меню цифровой дисплей ЗАВДАННЯ показывает значение температуры полученное от датчика термокомпенсации, то есть температуру среды, в которой находится возле клемм на тыльной стороне регулятора. При необходимости, откорректировать значения датчика термокомпенсации в параметре **SYS.06** с помощью клавиш программирования ▲ ▼.

Например, если реальная температура среды, в которой находится датчик 28,5°C, а в пункте **SYS.06** показывает 28,8°C, то необходимо клавишей [▼] уменьшить значение на дисплее ЗАВДАННЯ с 28,8 до 28,5. Нажать клавишу подтверждения [❖] и сохранить изменения в соответствующим пункте меню (см. раздел 4.7.5).

5.2 Линеаризация аналоговых входов Al1 и Al2

Функция линеаризации подчинена аналоговым входам AI1 и AI2. Линеаризация дает возможность правильного физического представления нелинейных регулируемых и измеряемых параметров.

* С помощью линеаризации можно производить, например, калибровку емкостей в литрах, метрах кубических или килограммах продукта, в зависимости от измеренного входного сигнала уровня в емкости.

При индикации линеаризуемой величины входа Al1 и Al2, определяющими параметрами являются начало и конец шкалы (процентное отношение к диапазону измерения), положение децимального разделителя, а также эквидистантные опорные точки линеаризации. Кривая линеаризации имеет «преломления» в опорных точках.

5.2.1 Параметры линеаризации входа Al1 и Al2

Например, параметры линеаризации входа AI1 следующие (для входа AI2 аналогично):

Уровень AIN1. Конфигурация аналогового входа AI1

```
[AIN1.00] =0009 - Тип шкалы аналогового входа AI1 - линеаризованная
```

[AIN1.01] Тип входа AI1

[AIN1.02] Количество участков линеаризации входа AI1

[AIN1.04] Положение децимального разделителя при индикации входа AI1

Уровень LNX1 Абсциссы опорных точек линеаризации входа Al1

```
[LNX1.00] Абсцисса начального значения (в % от входного сигнала)
```

[LNX1.01] Абсцисса 01 точки

[LNX1.02] Абсцисса 02 точки

.

[LNX1.18] Абсцисса 18 точки

[LNX1.19] Абсцисса 19 точки

Уровень LNY1. Ординаты опорных точек линеаризации входа Al1

```
[LNY1.00] Ордината начального значения (сигнал в технических единицах от минус 9999 до 9999)
```

[LNY1.01] Ордината 01 точки

[LNY1.02] Ордината 02 точки

.

[LNY1.18] Ордината 18 точки

[LNY1.19] Ордината 19 точки

5.2.2 Определение опорных точек линеаризации

5.2.2.1 Определение количества опорных точек линеаризации.

После определения необходимого количества участков линеаризации необходимо задать это значение в параметре **AIN1.06(AIN2.06)**. Пределы изменения параметра **AIN1.06(AIN2.06)** от 0000 до 0019.

Выбор необходимого количества участков линеаризации производится из соображения обеспечения необходимой точности измерения.

5.2.2.2 Определение значений опорных точек линеаризации.

Для каждого значения индицируемого входного сигнала Yi (в технических единицах от минус 9999 до 9999 с учетом децимального разделителя) вычислить соответствующую физическую величину из соответствующих функциональных (градуировочных) таблиц или графически из соответствующей кривой (при необходимости интерполировать) и задать значение для соответствующей опорной величины входного физического сигнала Xi (в %, от 00,00% до 99,99%). Соответствующие значения Xi (в %, от 00,00% до 99,99%) вводятся в параметрах на уровне LNX.1(LNX.2):

Уровень LNX1. Абсциссы опорных точек линеаризации входа Al1

```
[LNX1.00] Абсцисса начального значения (в % от входного сигнала)
```

[LNX1.01] Абсцисса 01 точки

[LNX1.02] Абсцисса 02 точки

.

[LNX1.18] Абсцисса 18 точки

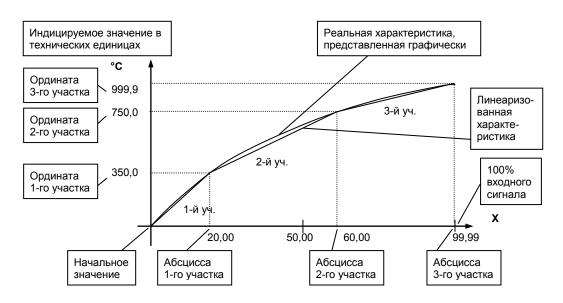
[LNX1.19] Абсцисса 19 точки

Соответствующие значения Yi (в технических единицах от минус 9999 до 9999 с учетом децимального разделителя) вводятся в параметрах LNY.1(LNY.2):

Уровень LNY1. Ординаты опорных точек линеаризации входа Al1

[LNY1.00] Ордината начального значения (сигнал в технических единицах от -9999 до 9999)

[LNY1.01] Ордината 01 точки


[LNY1.02] Ордината 02 точки

[LNY1.18] Ордината 18 точки

[LNY1.19] Ордината 19 точки

5.2.3 Примеры линеаризации сигналов

Пример 1. Линеаризация сигнала, подаваемого на вход Al1, представленная графически (кривой)

Конфигурируемые параметры для примера 1:

AIN1.00 = 0009	LNX1.00 = 00,00	LNY1.00 = 0000 (индицируется «000,0»)
AIN1.06 = 0003	LNX1.01 = 20,00	LNY1.01 = 3500 (индицируется «350,0»)
AIN1.03 = 000,0	LNX1.02 = 60,00	LNY1.02 = 7500 (индицируется «750,0»)
	LNX1.03 = 99,99	LNY1.03 = 9999 (индицируется «999,9»)

Пример 2. Линеаризация сигнала, подаваемого на вход Al1, представленная градуировочной таблицей

Линеаризация сигнала снимаемого с термопары градуировки ТПП, и подаваемого на вход AI1, диапазон измеряемых температур 0 - 1400°C, диапазон входного сигнала 0 - 14,315 мВ (0 - 100%).

Для обеспечения необходимой точности измерения выбираем 20 участков линеаризации и расчитанные значения в % входного сигнала для каждой опорной точки вводятся в соответствующий параметр.

Конфигурируемые параметры для примера 2:

AIN2.00 = 0009	Тип шкалы второго блока - линеаризованная
AIN2.06 = 0019	Количество участков линеаризации
AIN2.03 = 0000	Положение децимального разделителя

Параметры конфигурации рассчитываются и вводятся согласно таблицы 5.2.1.

Таблица 5.2.1 – Расчет и ввод параметров линеаризации примера 2

			Параметры конфигурации				
Номер опорной точки	Значение измеряемой температуры, °C	Значение входного сигнала в мВ	точек лине	Ординаты опорных точек линеаризации второго блока		опорных еаризации о блока	
			Номер параметра	Вводимое значение, °С	Номер параметра	Вводимое значение, %	
0	0	0,000	LNY2.00	0000	LNX2.00	00,00	
1	50	0,297	LNY2.01	0050	LNX2.01	02,07	
2	100	0,644	LNY2.02	0100	LNX2.02	04,50	
3	150	1,026	LNY2.03	0150	LNX2.03	07,17	
4	200	1,436	LNY2.04	0200	LNX2.04	10,03	
5	250	1,852	LNY2.05	0250	LNX2.05	12,99	
6	300	2,314	LNY2.06	0300	LNX2.06	16,16	
7	350	2,761	LNY2.07	0350	LNX2.07	19,32	
8	400	3,250	LNY2.08	0400	LNX2.08	22,70	
9	450	3,703	LNY2.09	0450	LNX2.09	25,97	
10	500	4,216	LNY2.10	0500	LNX2.10	29,45	
11	550	4,689	LNY2.11	0550	LNX2.11	32,84	
12	600	5,218	LNY2.12	0600	LNX2.12	36,45	
13	700	6,253	LNY2.13	0700	LNX2.13	43,68	
14	800	7,317	LNY2.14	0800	LNX2.14	51,11	
15	900	8,416	LNY2.15	0900	LNX2.15	58,79	
16	1000	9,550	LNY2.16	1000	LNX2.16	66,71	
17	1100	10,714	LNY2.17	1100	LNX2.17	74,84	
18	1300	13,107	LNY2.18	1300	LNX2.18	91,56	
19	1400	14,315	LNY2.19	1400	LNX2.19	99,99	

5.3 Калибровка аналоговых выходов

Перед началом калибровки аналогового выхода необходимо привести в соответствие положение перемычки на модуле аналогового выхода (установленном внутри прибора). Типы выходных сигналов и положение перемычки приведены в таблице 4.9.2.

Уровень калибровки аналоговых выходов имеет три параметра. Параметр **CLO1.00 (CLO2.00)** используется для индикации аналогового выхода 1 (аналогового выхода 2) в %. Если регулятор МИК-122 находится в ручном режиме, то в этом пункте можна также производить изменения состояния аналоговых выходов AO1, AO2.

Пункты CLO1.01(CLO2.01) и CLO1.02 (CLO2.02) используются для калибровки начального и конечного значения аналогового выхода 1 (аналогового выхода 2). Порядок калибровки следующий:

- 1. Подключите к первому аналоговому выходу, АО1, регулятора МИК-122 образцовый измерительный прибор миллиамперметр постоянного тока.
- 2. В режиме конфигурации установите параметр **CLO1.01** "Калибровка начального значения первого аналогового выхода, AO1".
- 3. Нажимая клавиши [▲] или [▼] установите величину выходного сигнала по миллиамперметру равную 0 мА (или 4 мА), соответствующую 0% диапазона, в зависимости от типа сигнала.
 - Нажать клавишу [♥].
- 5. Установить параметр **CLO1.02** "Калибровка конечного значения первого аналогового выхода, AO1"
- 6. Нажимая клавиши [▲] или [▼] установите величину выходного сигнала по миллиамперметру равную 5 мА (или 20 мА), соответствующую 100% диапазона, в зависимости от типа сигнала.
 - 7. Нажать клавишу [*4*].
 - 8. Автоматически установится параметр CLO1.02 "Тест первого аналогового выхода, АО1".
 - Нажмите клавишу [⋪].

Необходимо помнить, что после проведения калибровки необходимо произвести запись параметров в энергонезависимую память (см. раздел 4.7.5), в противном случае введенная информация не будет сохранена при отключении питания регулятора. Калибровка второго аналогового выхода выполняется аналогично первому аналоговому выходу.

6 Техническое обслуживание

6.1 Общие указания

- 6.1.1 Техническое обслуживание комплекс работ, которые проводятся периодически в плановом порядке на работоспособном блоке с целью предотвращения отказам, продления его срока службы за счет выявления и устранения предотказного состояния для поддержания нормальных условий эксплуатации.
- 6.1.2 Техническое обслуживание заключается в проведении работ по контролю технического состояния и последующему устранению недостатков, выявленных в процессе контроля; профилактическому обслуживанию, выполняемому с установленной периодичностью, длительностью и в определенном порядке; устранению отказов, выполнение которых возможно силами персонала, выполняющего техническое обслуживание.

6.2 Меры безопасности

- 6.2.1 Пренебрежение мерами предосторожности и правилами эксплуатации может стать причиной травмирования персонала или повреждения оборудования!
- 6.2.2 Для обеспечения безопасного использования оборудования неукоснительно выполняйте указания данной главы!
- 6.2.3 К эксплуатации регулятора допускаются лица, имеющие разрешение для работы на электроустановках напряжением до 1000 В и изучившие руководство по эксплуатации в полном объеме.
- 6.2.4 Эксплуатация регулятора разрешается при наличии инструкции по технике безопасности, утвержденной предприятием-потребителем в установленном порядке и учитывающей специфику применения прибора на конкретном объекте. При эксплуатации необходимо соблюдать требования действующих правил ПТЭ и ПТБ для электроустановок напряжением до 1000В.
- 6.2.5 Все монтажные и профилактические работы должны проводиться при отключенном электропитании.
 - 6.2.6 Запрещается подключать и отключать соединители при включенном электропитании.
- 6.2.7 Тщательно производите подключение с соблюдением полярности выводов. Неправильное подключение или подключение разъемов при включенном питании может привести к повреждению электронных компонентов регулятора.
 - 6.2.8 Не подключайте неиспользуемые выводы.
- 6.2.9 При разборке регулятора для устранения неисправностей прибор должен быть отключен от сети электропитания.
- 6.2.10 При извлечении регулятора из корпуса не прикасайтесь к его электрическим компонентам и не подвергайте внутренние узлы и части ударам.
- 6.2.11 Располагайте прибор как можно далее от устройств, генерирующих высокочастотные излучение (например, ВЧ-печи, ВЧ-сварочные аппараты, машины, или приборы, использующие импульсные напряжения) во избежание сбоев в работе.

6.3 Порядок технического обслуживания

- 6.3.1 В зависимости от регулярности проведения техническое обслуживание должно быть:
- а) периодическим, которое выполняется через календарные промежутки времени;
- б) адаптивным, которое выполняется по необходимости, то есть, в зависимости от фактического состояния регулятора и наличия свободного обслуживающего персонала.
 - 6.3.2 Устанавливаются такие виды технического обслуживания:
- а) техническое обслуживание при хранении, которое заключается в переконсервации регулятора при достижении предельного срока консервации во время хранения в соответствии с требованиями эксплуатационной документации;
- б) техническое обслуживание при транспортировке, которое заключается в подготовке регулятора к транспортированию, демонтаже из технологического оборудования и упаковке перед транспортированием;
- в) техническое обслуживание при эксплуатации, которое заключается в подготовке прибора перед вводом в эксплуатацию, в процессе ее эксплуатации и в периодической проверке работоспособности прибора.

- 6.3.3 Периодическое техническое обслуживание при эксплуатации регулятора устанавливается потребителем с учетом интенсивности и условий эксплуатации, но не реже чем один раз в год. Для регулятора МИК-122 целесообразна ежеквартальная периодичность технического обслуживания при эксплуатации.
 - 6.3.4 Периодическое обслуживание должно проводиться в следующем порядке:
 - а) провести работы, которые выполняются при техническом осмотре;
 - б) проверить сопротивление изоляции;
 - в) проверить работоспособность регулятора.
- 6.3.5 Технический осмотр регулятора выполняется обслуживающим персоналом в следующем порядке:
- а) перед началом смены следует провести внешний осмотр регулятора. Особое внимание следует обратить на чистоту поверхности, маркировку и отсутствие механических повреждений.
 - б) проверить надежность крепления регулятора;
- в) проверить техническое состояние проводов (кабелей) на целостность и защищенность от механических повреждений.

7 Хранение и транспортирование

7.1 Условия хранения регулятора

- 7.1.1 Срок хранения в потребительской таре не меньше 1 года.
- 7.1.2 Регулятор должно храниться в сухом и вентилируемом помещении при температуре окружающего воздуха от минус 40°C до плюс 70°C и относительной влажности от 30 до 80% (без конденсации влаги). Данные требования являются рекомендуемыми.
- 7.1.3 Воздух в помещении не должен содержать пыли и примеси агрессивных паров и газов, вызывающих коррозию (в частности: газов, содержащих сернистые соединения или аммиак).
- 7.1.4 В процессе хранении или эксплуатации не кладите тяжелые предметы на прибор и не подвергайте его никакому механическому воздействию, так как устройство может деформироваться и повредиться.

7.2 Требования к транспортированию регулятора и условия, при которых оно должно осуществляться

- 7.2.1 Транспортирование регулятора в упаковке предприятия-изготовителя осуществляется всеми видами транспорта в крытых транспортных средствах. Транспортирование самолетами должна выполняться только в отапливаемых герметизированных отсеках.
- 7.2.2 Прибор должен транспортироваться в климатических условиях, которые соответствуют условиям хранения 5 согласно ГОСТ 15150, но при давлении не ниже 35,6 кПа и температуре не ниже минус 40 °C или в условиях 3 при морских перевозках.
- 7.2.3 Во время грузо-разгрузочных работ и транспортировании запакованный прибор не должен подвергаться резким ударам и влиянию атмосферных осадков. Способ размещения на транспортном средстве должен исключать перемещение регулятора.
- 7.2.4 Перед распаковыванием после транспортирования при отрицательной температуре прибор необходимо выдержать в течение 3 часов в условиях хранения 1 согласно ГОСТ 15150.

8 Гарантии изготовителя

- 8.1 Производитель гарантирует соответствие регулятора техническим условиям ТУ У 33.2-13647695-003:2006. При не соблюдении потребителем требований условий транспортирования, хранения, монтажа, наладки и эксплуатации, указанных в настоящем руководстве, потребитель лишается права на гарантию.
- 8.2 Гарантийный срок эксплуатации 5 лет со дня отгрузки регулятора. Гарантийный срок эксплуатации регуляторов, которые поставляются на экспорт 18 месяцев со дня проследования их через государственную границу Украины.
- 8.3 По договоренности с потребителем предприятие-изготовитель осуществляет послегарантийное техническое обслуживание, техническую поддержку и технические консультации по всем видам своей продукции.

ПРИЛОЖЕНИЯ

Приложение A - Габаритные и присоединительные размеры

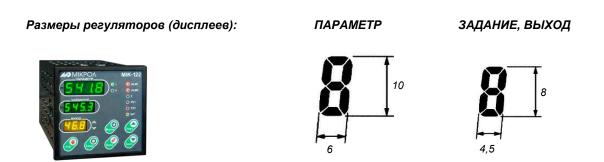
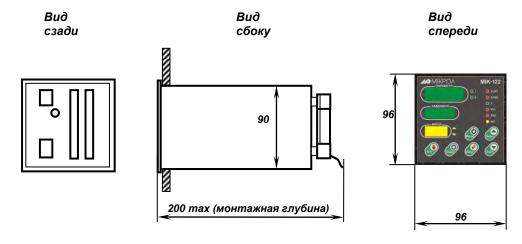



Рисунок А.1 - Внешний вид микропроцессорного регулятора

Рекомендуемая толщина щита от 1 до 5 мм. Рисунок А.2 - Габаритные размеры

Разметка отверстий на щите

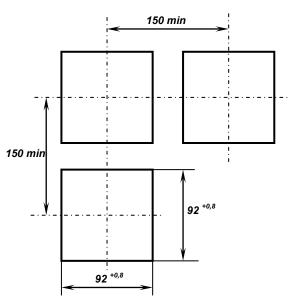


Рисунок А.3 - Разметка отверстий на щите

Приложение Б - Подключение регулятора. Схема внешних соединений

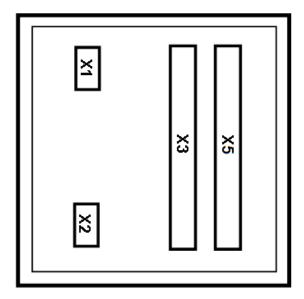


Рисунок Б.1 – Расположение внешних соединительных разъемов регулятора МИК-122:

- Х1 Разъем подключения питания,
- X2 Разъем подключения интерфейса RS-485,
- X3 Разъем подключения дискретных выходов DO1-DO4,
- Х5 Разъем подключения аналоговых входов, аналогового выхода, дискретных входов.

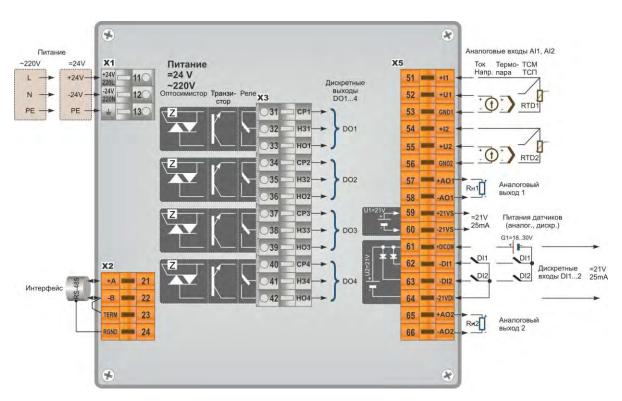


Рисунок Б.2 – Схема внешних соединений к регулятору МИК-122

- 1. Неиспользуемые клеммы соединительных разъемов регулятора не подключать,
- 2. Назначение перемычек для настройки входов/выходов см. таблицы 4.9.1.
- 3. Если дискретные входа не используются, тогда клеммы 61, 64 можно используются как источник внутреннего электропитания.

Приложение Б.1 Подключение аналоговых датчиков с пассивными выходами

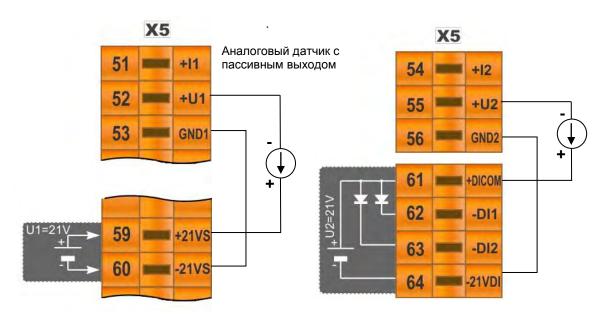


Рисунок Б.3 - Подключение к регулятору МИК-122 аналоговых датчиков с пассивными выходами

Примечание. Сопротивление линии связи не более 500 Ом. .

Приложение Б.2 Подключение исполнительных устройств к аналоговому выходу АО

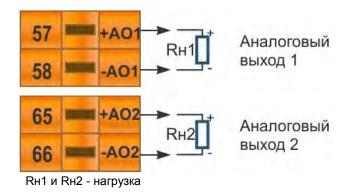


Рисунок Б.4 - Подключение потенциальных аналоговых входов к регулятору МИК-122

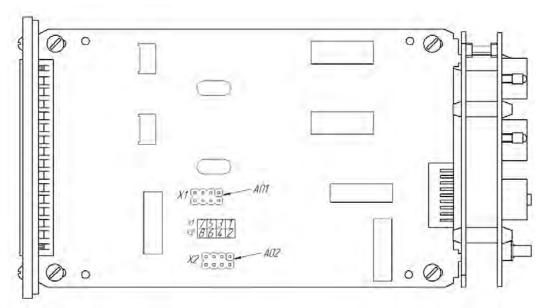


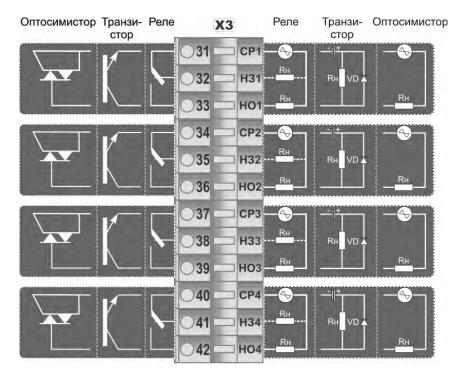
Рисунок Б.5 – Расположение перемычек для настройки аналоговых выходов на плате унифицированных входов/выходов

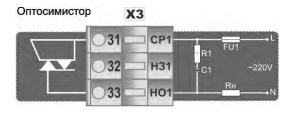
Таблица Б.З.1 - Положение перемычек для выбора диапазона аналогового выхода

Диапазон выходного сигнала	Положение перемычек на плате X1,X2
От 0 мА до 5 мА, Rн ≤ 500 Ом	[2-4], [7-8]
От 0 мА до 20 мА, Rн ≤ 500 Ом	[2-4], [5-6]
От 4 мА до 20 мА, Rн ≤ 500 Ом	[2-4], [5-6]
От 0 В до 10 В, Rн ≥ 2 кОм	[1-2], [3-4]

Примечание. Смещение выходного сигнала 4-20мА устанавливается при калибровке аналогового выхода.

Приложение Б.3 Подключение дискретных нагрузок к регулятору МИК-122




Рисунок Б.6 - Подключение дискретных нагрузок к регулятору МИК-122

Примечания.

При подключении индуктивных нагрузок (реле, пускатели, контакторы, соленоиды и т.п.) к дискретным транзисторным выходам контроллера во избежание выхода из строя выходного транзистора изза большого тока самоиндукции параллельно нагрузке (обмотке реле) необходимо устанавливать блокирующий диод VD – см. схему подключения. Внешний диод устанавливать на каждом канале, к которому подключена индуктивная нагрузка.

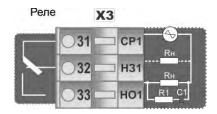
Тип устанавливаемого диода КД209, КД258, 1N4004...1N4007 или аналогичный, рассчитанный на обратное напряжение 100В, прямой ток 0,5А.

Рекомендации по подключению индуктивной нагрузки для симистора.

где, VS1 - Внешний симистор, установленный на радиатор;

R1 - резистор МЛТ-1-39 Ом-5%;

С1 - конденсатор К73-17-630В-0,1-0,5 мкФ-10%;


Rн - индуктивная нагрузка;

FU1 - плавкий предохранитель.

Рисунок Б.7 – Схема подключения индуктивной нагрузки для симистора

- 1. На рисунке Б.7 условно показано расположение и назначение замыкающих контактов оптосимистора канала DO1.
 - 2. Неиспользуемые клеммы соединительного разъема XP3 не подключать.
- 3. Максимально допустимое напряжение переменного тока 6-300В, максимально допустимый переменный ток 700мА.

Рекомендации по подключению индуктивной нагрузки для механического реле.

где, R1 резистор МЛТ-1-39 Ом-5%;

С1 конденсатор К73-17-630В-0,1-0,5 мкФ-10%;

Rн индуктивная нагрузка.

Рисунок Б.8 – Схема подключения индуктивной нагрузки для симистора

- 1. На рисунке Б.8 условно показано расположение и назначение замыкающих контактов механического реле канала DO1.
 - 2. Максимально допустимое напряжение и максимально допустимый ток:
 - до 250В (8А) переменного тока при резистивной нагрузке;
 - до 250B (3A) переменного тока при индуктивной нагрузке (cosφ=0,4);
 - от 5 В (10мА) до 30 В(5А) постоянного тока при резистивной нагрузке.

Приложение Б.4 Схема подключения интерфейса RS-485

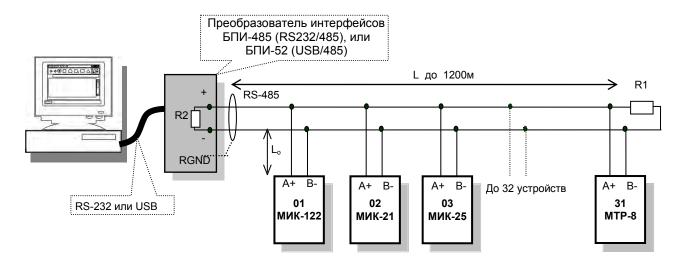


Рисунок Б.9 - Организация интерфейсной связи между компьютером и регуляторами

Примечания.

- 1. К компьютеру может быть подключено до 32 регуляторов, включая преобразователь интерфейсов БПИ-485 (БПИ-52).
 - 2. Общая длина кабельной линии связи не должна превышать 1200м.
 - 3. В качестве кабельной линии связи предпочтительно использовать экранированную витую пару.
 - 4. Длина ответвлений L₀ должна быть как можно меньшей.
- 5. К интерфейсным входам регуляторов, расположеным в крайних точках соединительной линии необходимо подключить два терминальных резистора сопротивлением 120 Ом (R1 и R2). Подключение резисторов к регуляторам № 01 30 не требуется. Подключение терминальных резисторов в блоке преобразования интерфейсов БПИ-485(БПИ-52) смотри в РЭ на БПИ-485(БПИ-52). Подключение терминальних резисторов в МИК-122 смотри рисунок Б.10.

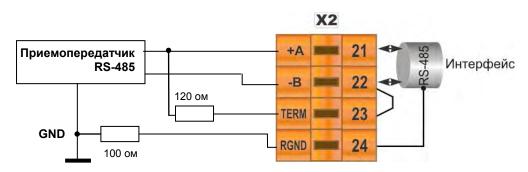


Рисунок Б.10 - Рекомендуемая схема подключения интерфейса RS-485

- 1. Все ответвители приемо-передатчиков, присоединенные к одной общей передающей линии, должны согласовываться только в двух *крайних* точках. Длина ответвлений должна быть как можно меньшей.
- 2. Необходимость экранирования кабелей, по которым передается информация, зависит от длины кабельных связей и от уровня помех в зоне прокладки кабеля.
- 3. Применение экранированной витой пары в промышленных условиях является предпочтительным, поскольку это обеспечивает получение высокого соотношения сигнал/шум и защиту от синфазной помехи.

Приложение В - Коммуникационные функции

Приложение В.1 Общие сведения

Микропроцессорный регулятор МИК-122 может обеспечить выполнение коммуникационной функции по интерфейсу RS-485, позволяющей контролировать и модифицировать его параметры при помощи внешнего устройства (компьютера, микропроцессорной системы управления).

Интерфейс предназначен для конфигурирования регулятора, для использования в качестве удаленного устройства при работе в современных сетях управления и сбора информации (приема-передачи команд и данных), SCADA системах и т.п.

Протоколом связи по интерфейсу RS-485 является протокол Modbus режим RTU (Remote Terminal Unit).

Для работы необходимо настроить коммуникационные характеристики регулятора МИК-122 таким образом, чтобы они совпадали с настройками обмена данными главного компьютера. Характеристики сетевого обмена настраиваются на УРОВНЕ 19 конфигурации.

При обмене по интерфейсному каналу связи, если происходит передача данных от регулятора в сеть, на передней панели регулятора мигает индикатор **IHT**.

Программно доступные регистры регулятора МИК-122 приведены в таблице В5.1 приложения В.5.

Доступ к регистрам оперативного управления No 0-31 разрешен постоянно.

Доступ к регистрам программирования и конфигурации No 32-213 разрешается в случае установки «1» в регистр разрешения программирования No 31, которое возможно осуществить как с передней панели регулятора МИК-122, так и с персональной ЭВМ.

Количество запрашиваемых регистров не должно превышать 16. Если в кадре запроса заказано более 16 регистров, регулятор МИК-122 в ответе ограничивает их количество до первых 16-ти регистров.

При программировании с ЭВМ необходимо контролировать диапазоны изменения значений параметров, указанные в таблице В5.1 приложения В.5.

Для обеспечения минимального времени реакции на запрос от ЭВМ в регуляторе существует параметр – SYS. «Тайм-аут кадра запроса в системных тактах регулятора 1 такт = 250 мкс». Минимально возможные тайм-ауты для различных скоростей следующие (таблица В.1.1):

Таблица В.1.1 - Минимально возможные тайм-ауты для различных скоростей передачи данных

Скорость, бит/с	Время передачи кадра запроса, мсек	Тайм-аут, в системных тактах 1 такт = 250 мкс (Т _{ime out} [с.т.])
2400	36,25	145
4800	18,13	73
9600	9,06	37
14400	6,04	25
19200	4,53	19
28800	3,02	13
38400	2,27	10
57600	1,51	7
76800	1,13	5
115200	0,76	4
230400	0,38	3
460800	0,2	2
921600	0,1	1

Время передачи кадра запроса - пакета из 8-ми байт определяется соотношением (где: один передаваемый байт = 1 старт бит+ 8 бит + 1стоп бит = 10 бит):

Если наблюдаются частые сбои при передаче данных от регулятора, то необходимо увеличить значение его тайм-аута, но при этом учесть, что необходимо увеличить время повторного запроса от ЭВМ, т.к. всегда время повторного запроса должно быть больше тайм-аута регулятора.

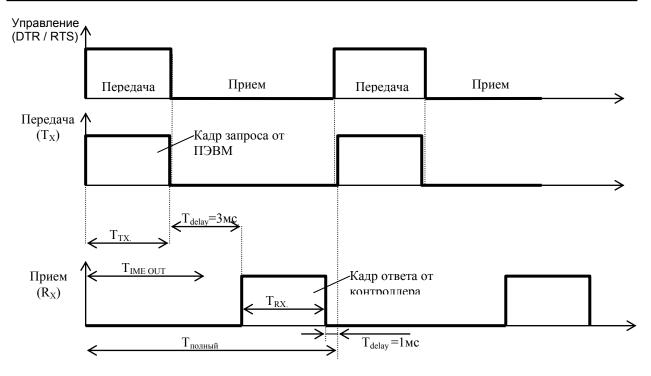


Рисунок В.1.1 - Временные диаграммы управления передачей и приемом блока интерфейсов БПИ-485 (БПИ-52).

Time out - время ожидания конца кадра запроса. Время передачи кадра запроса должно быть меньше чем время ожидания конца кадра запроса иначе регулятор не примет полностью кадр запроса.

 T_{delay} – внутреннее время через которое МИК-122 ответит. Это время составляет 3мс.

Пример расчета полного времени запроса – ответа для скорости 115200 бит/с.

Время передачи кадра запроса и кадра ответа при скорости 115 кбит/с составит 0,76 мсек.

 $T_{передачи} = 0,76$ мс ($T_{out} = 4$ системных такта = 1 мс)

Полное время кадра запроса – ответа:

 $T_{\text{полный}} = T_{TX} + T_{\text{delay}} + T_{RX} + T_{\text{delay}} = 0.76 + 3 + 0.76 + 1 = 6 \text{ мс.}$

Итак, за 1 секунду можно опросить регистров:

N = 1000 mc / 6 mc + 10 = 176.

Приложение В.2 Программно доступные регистры регулятора МИК-122

Таблица В.2 - Программно доступные регистры регулятора МИК-122

Функциона льный код операции	№ Регистра	Формат данных	Пункт меню	Наименование параметра	Диапазон изменения (десятичные значения)
03	0	BYTE	SYS.04	Регистр идентификации регулятора: Мл.байт - код (модель) регулятора 258 DEC, Ст.байт - версия прогр. обеспечения 102 DEC	XX.05 DEC (по-байтно) XX.05 HEX (по-байтно)
03	1,2	SHORT	Передняя панель	Значение аналогового входа AI1, AI2 параметр	От минус 9999 до 9999
03 / 06	3	SHORT	SYS.06	Коррекция показаний датчика термокомпенсации	
03 / 06	4,5	BYTE	Входы DI	Регистр дискретных входов DI1 и DI2	0 – отключен, 1 – включен
03 / 06	6 - 9	BYTE	Выходы DO	Регистр дискретных выходов DO1 – DO4	0 – откл., 1 – вкл.
03 / 06	10	SHORT	Передняя панель	Значение управляющего воздействия, подаваемого на аналоговый выход АО1 регулятора контура 1	0 – 99,9
03 / 06	11	SHORT	Передняя панель	Значение управляющего воздействия, подаваемого на аналоговый выход АО2 регулятора контура 2	0 – 99,9
03 / 06	12	BYTE	Передняя панель	Режим работы регулятора контура 1	0 – РУ, 1 – ЛУ.
03 / 06	13	BYTE	Передняя панель	Режим работы регулятора контура 2	0 – РУ, 1 – ЛУ.
03 / 06	14	SHORT	Передняя панель	Заданная точка регулятора контура 1	От минус 9999 до 9999
03 / 06	15	SHORT	Передняя панель	Заданная точка регулятора контура 2	От минус 9999 до 9999
03 / 06	16	SHORT		Рассогласование между входным параметром PV1 и заданием SP регулятора контура 1	
03 / 06	17	SHORT		Рассогласование между входным параметром PV2 и заданием SP регулятора контура 2	
03 / 06	18	SHORT		Положение механизма регулятора контруров 1. 1) Внутренняя переменная слежения за выходом без ОС. 2) Вход Al2 с ОС.	От 0000 до 0999
03 / 06	19	SHORT		Положение механизма регулятора контруров 2. 1) Внутренняя переменная слежения за выходом без ОС. 2) Вход АІ1 с ОС.	От 0000 до 0999
03 / 06	20,21	SHORT	PID.00, PID.03	Коэффициент усиления регуляторов контура 1 и 2	От 1 до 50,0
03 / 06	22,23	SHORT	PID.01, PID.04	Время интегрирования регуляторов контура 1 и 2	От 0000 до 6000
03 / 06	24,25	SHORT	PID.02, PID.05	Время дифференцирования регуляторов контура 1 и 2	От 0000 до 6000
03 / 06	26 – 31	SHORT	1 10.03	Резерв	
03 / 06	32	BYTE	LOAD.00	Разрешение программирования	0 – запрещено, 1 – разрешено
03 / 06	33,34	BYTE	AIN1.00; AIN2.00	Тип шкалы	От 0 до 17
03 / 06	35,36	SHORT	AIN1.01; AIN2.01	Нижний предел шкалы	От минус 9999 до 9999
03 / 06	37,38	SHORT	AIN1.02; AIN2.02	Верхний предел шкалы	От минус 9999 до 9999
03 / 06	39,40	BYTE	AIN1.03; AIN2.03	Положение децимального разделителя	0 – «xxxx», 1 – «xxx,x», 2 – «xx,xx», 3 – «x,xxx»
03 / 06	41,42	SHORT	AIN1.04; AIN2.04	Постоянная времени входного цифрового фильтра	От 000,0 до 060,0*
03 / 06	43,44	SHORT	AIN1.05; AIN2.05	Максимальная длительность импульсной помехи для сигнала	От 000,0 до 005,0*
03 / 06	45,46	BYTE	AIN1.07; AIN2.07	Метод температурной коррекции входных сигналов термопар	0 – ручная 1 – автоматическая
03 / 06	47,48	SHORT	AIN1.08; AIN2.08	Значение температуры в режиме ручной коррекции входных сигналов от термопары	От минус 99,9 до 999,9*
03 / 06	49,50	SHORT	COR1.01; COR2.01	Коэффициент коррекции (смещение)	От минус 9999 до 9999

Таблица В.2 - Программно доступные регистры регулятора МИК-122

Функциона льный код операции	№ Регистра	Формат данных	Пункт меню	Наименование параметра	Диапазон изменения (десятичные значения)
03 / 06	51 – 54	BYTE	DOT1.00- DOT4.00	Логика работы выходного устройства DO1 - DO4	От 0000 до 0006
03 / 06	55 – 58	BYTE	DOT1.01- DOT4.01	Источник аналогового сигнала для управления дискретным выходом	От 0000 до 0001
03 / 06	59 – 62	SHORT	DOT1.02- DOT4.02	Длительность импульса выходного устройства DO1 - DO4	000,0* – статический 000,1 – 999,9* – импульсный
03 / 06	63 – 66	SHORT	DOT1.03- DOT4.03	Уставка MIN DO1 – DO4	В диапазоне шкалы выбранного типа датчика
03 / 06	67 – 70	SHORT	DOT1.04- DOT4.04	Уставка MAX DO1 – DO4	В диапазоне шкалы выбранного типа датчика
03 / 06	71 – 74	SHORT	DOT1.05- DOT4.05	Гистерезис выходного устройства DO1 - DO4	От минус 9999 до 9999
03 / 06	75 - 78	BYTE	DOT1.06- DOT4.06	Безопасное положение выходного устройства DO1 – DO4 при обрыве датчика	0 – последнее положение 1 – откл. 2 – вкл.
03 / 06	79, 80	BYTE	CTR1.00; CTR2.00	Тип регулятора (контура 1, контура 2)	От 0000 до 0005
03 / 06	81	ВҮТЕ	CTR1.01; CTR2.01	Регуляторы в режиме Override	0000 – откл. 0001-Override управ. по min 0002-Override управ. по max См. приложение Г.1
03 / 06	82,83	BYTE	CTR1.02; CTR2.02	Тип управления регулятора (контура 1, контура 2)	0000 – обратное 0001 – прямое
03 / 06	84,85	SHORT	CTR1.03; CTR2.03	Скорость динамической балансировки задания (контура 1, контура 2)	От 0000 до 9999
03 / 06	86,87	SHORT	CTR1.05; CTR2.05	Время механизма Тм, период ПИД-ШИМ (контура 1, контура 2)	От 000,0 до 999,9
03 / 06	88,89	SHORT	CTR1.06; CTR2.06	Минимальная длительность импульса Тмин (контура 1, контура 2)	От 000,0 до 999,9
03 / 06	90,91	SHORT	CTR1.07; CTR2.07	Задержка на включение DO в противоположном направлении (контура 1, контура 2)	От 000,1 до 060,0
03 / 06	92,93	SHORT	CTR1.04; CTR2.04	Зона нечувствительности 3-х позиционного регулятора (контура 1, контура 2)	От 0000 до 9999
03 / 06	94,95	SHORT	CTR1.08 CTR2.08	Гистерезис выходных устройств импульсного регулятора (контура 1, контура 2)	От 0000 до 0900 ²⁾
03 / 06	96,97	SHORT	CTR1.10; CTR2.10	Ограничение МАХ аналоговой ячейки регулятора (контура 1, контура 2)	От 000,0 до 099,9 ²⁾
03 / 06	98,99	SHORT	CTR1.09; CTR2.09	Ограничение MIN аналоговой ячейки регулятора (контура 1, контура 2)	От 000,0 до 099,9 ²⁾
03 / 06	100,101	ВҮТЕ	CTR1.12; CTR2.12	Безопасное положение выхода регулятора в случае отказа датчика, линии связи или измерительного сигнала (контура 1, контура 2)	От 0000 до 0003
03 / 06	102, 103	SHORT	CTR1.13; CTR2.13	Значение безопасного положения, устанавливаемое пользователем (контура 1, контура 2)	От минус 009,9 до 109,9
03 / 06	104,105	BYTE	CTR1.11; CTR2.11	Разрешение ограничения выхода (контура 1, контура 2)	0 – авт 1 – авт + ручн.
03 / 06	106	BYTE	DIN.00 CTR1.18; CTR2.18;	Назначение дискретных входов DI1 (контура 1, контура 2)	От 0 до 8
03 / 06	107	BYTE	DIN.01 CTR1.19 CTR2.19	Назначение дискретных входов DI2 (контура 1, контура 2)	От 0 до 8
03 / 06	108,109	BYTE	CTR1.14 CTR2.14	Запрет изменения задания (контура 1, контура 2)	От 0000 до 0001
03 / 06	110,111	SHORT	CTR1.15; CTR2.15	Уставка техн. сигнализации "минимум" (контура 1, контура 2)	От минус 9999 до 9999
03 / 06	112,113	SHORT	CTR1.16; CTR2.16	Уставка техн. сигнализации "максимум" (контура 1, контура 2)	От минус 9999 до 9999
03 / 06	114,115	SHORT	CTR1.17; CTR2.17	Гистерезис технологической сигнализации (slave/master)	От 0000 до 0900
03 / 06	116	BYTE	SYS.05	Индикации параметра по умолчанию	От 0000 до 0002
03 / 06	117	BYTE	SYS.04	Разрешение дополнительной индикации параметра	От 0000 до 0002

Таблица В.2 - Программно доступные регистры регулятора МИК-122

таолица	<u> Б.2 - Проер</u>	awww.	iyiinbie peeuciii	ры регуляттора ічілік-122	
Функциона льный код операции	№ Регистра	Формат данных	Пункт меню	Наименование параметра	Диапазон изменения (десятичные значения)
03 / 06	118	BYTE	AOT1.00	Источник аналогового сигнала для управления аналоговым выходом АО1 (функция ретрансмиссии)	От 0000 до 0002
03 / 06	119	BYTE	AOT2.00	Источник аналогового сигнала для управления аналоговым выходом АО2 (функция ретрансмиссии)	От 0000 до 0002
03 / 06	120	BYTE	AOT1.01	Направление выходного сигнала АО1	0-прямое; 1-обратное
03 / 06	121	BYTE	AOT2.01	Направление выходного сигнала АО2	0-прямое; 1-обратное
03 / 06	122	SHORT	AOT1.02	Начальное значение входного сигнала равное 0% выходного сигнала AO1	От минус 9999 до 9999
03 / 06	123	SHORT	AOT2.02	Начальное значение входного сигнала равное 0% выходного сигнала AO2	От минус 9999 до 9999
03 / 06	124	SHORT	AOT1.03	Конечное значение входного сигнала равное 100% выходного сигнала AO1	От минус 9999 до 9999
03 / 06	125	SHORT	AOT2.03	Конечное значение входного сигнала равное 100% выходного сигнала AO2	От минус 9999 до 9999
03 / 06	126,127	BYTE	AIN1.06, AIN2.06	Количество точек линеаризации	От 0000 до 0019
03 / 06	128-147	SHORT	LNX1.00 – LNX1.19	Абсциссы опорных точек линеаризации аналогового входа AIN1	От 00,00 до 99,99
03 / 06	148-167	SHORT	LNX2.00 – LNX2.19	Абсциссы опорных точек линеаризации аналогового входа AIN2	От 00,00 до 99,99
03 / 06	168-187	SHORT	LNY1.00 - LNY1.19	Ординаты опорных точек линеаризации аналогового входа AIN1	От минус 9999 до 9999
03 / 06	188-207	SHORT	LNY2.00 – LNY2.19	Ординаты опорных точек линеаризации аналогового входа AIN2	От минус 9999 до 9999
03 / 06	208,209	SHORT	AIN1.09 AIN2.09	Минимальное значение входного сигнала АЦП	От 1500 до 6000
03 / 06	210,211	SHORT	AIN1.10 AIN2.10	Максимальное значение входного сигнала АЦП	От 2000 до 22000
03 / 06	212,214	SHORT	CLO1.00; CLO1.01	Начальное и конечное значение калибровки шкалы выхода AO1	От минус 9999 до 9999
03 / 06	213,215	SHORT	CLO2.00; CLO2.01	Начальное и конечное значение калибровки шкалы выхода AO2	От минус 9999 до 9999
03 / 06	216	SHORT		Начальное значение шкалы калибровки датчика термокомпенсации	
03 / 06	217	SHORT		Конечное значение шкалы калибровки датчика термокомпенсации	
03	218	BYTE	Передняя панель	Ошибка входа	
03	219	BYTE	Передняя панель	Ошибка калибровки	
03	220	BYTE	Передняя панель	Ошибка пользователя при калибровке	
03	221	BYTE	SYS.02	Тайм-аут кадра запроса	От 0 до 200
03	222	BYTE	SYS.00	Сетевой адрес	От 0 до 255
03	223	BYTE	SYS.01	Скорость обмена	От 0 до 12
					· v mv ·=

Примечание. Регулятор МИК-122 обменивается данными по протоколу Modbus RTU в режиме "No Group Write" - стандартный протокол без поддержки группового управления дискретными сигналами.

Приложение B.3 MODBUS протокол

В.3.1 Формат каждого байта, который принимается и передается регуляторами следующий:

1 start bit, 8 data bits, 1 Stop Bit (No Parity Bit) LSB (Least Significant bit) младший бит передается первым.

Кадр Modbus сообщения следующий:

DEVICE ADDRESS	FUNCTION CODE	DATA	CRC CHECK
8 BITS	8 BITS	k x 8 BITS	16 BITS

Где k≤16 – количество запрашиваемых регистров. Если в кадре запроса заказано более 16 регистров, регулятор МИК-122 в ответе ограничивает их количество до первых 16-ти регистров.

B.3.2 Device Address. Адрес устройства

Адрес регулятора (slave-устройства) в сети (1-255), по которому обращается SCADA система (master-устройство) со своим запросом. Когда удаленный контроллер посылает свой ответ, он размещает этот же (собственный) адрес в этом поле, чтобы master-устройство знало какое slave-устройство отвечает на запрос.

B.3.3 Function Code. Функциональный код операции

МИК-122 поддерживает следующие функции:

Function Code	Функция
03	Чтение регистра(ов)
06	Запись в один регистр

В.3.4 Data Field. Поле передаваемых данных

Поле данных сообщения, посылаемого SCADA системой удаленному контроллеру содержит добавочною информацию, которая необходима slave-устройству для детализации функции. Она включает:

- начальный адрес регистра и количество регистров для функции 03 (чтение)
- адрес регистра и значение этого регистра для функции 06 (запись).

Поле данных сообщения, посылаемого в ответ удаленным контроллером содержит:

- количество байт ответа на функцию 03 и содержимое запрашиваемых регистров
- адрес регистра и значение этого регистра для функции 06.

В.3.5 CRC Check. Поле значения контрольной суммы

Значение этого поля - результат контроля с помощью циклического избыточного кода (Cyclical Redundancy Check -CRC).

После формирования сообщения (address, function code, data) передающее устройство рассчитывает CRC код и помещает его в конец сообщения. Приемное устройство рассчитывает CRC код принятого сообщения и сравнивает его с переданным CRC кодом. Если CRC код не совпадает, это означает что имеет место коммуникационная ошибка. Устройство не выполняет действий и не дает ответ в случае обнаружения CRC ошибки.

<u>Последовательность CRC расчетов:</u>

- 1. Загрузка CRC регистра (16 бит) единицами (FFFFh).
- 2. Исключающее ИЛИ с первыми 8 бит байта сообщения и содержимым CRC регистра.
- 3. Сдвиг результата на один бит вправо.
- 4. Если сдвигаемый бит = 1, исключающее ИЛИ содержимого регистра с A001h значением.
- 5. Если сдвигаемый бит нуль, повторить шаг 3.
- 6. Повторять шаги 3, 4 и 5 пока 8 сдвигов не будут иметь место.
- 7. Исключающее ИЛИ со следующими 8 бит байта сообщения и содержимым СКС регистра.
- 8. Повторять шаги от 3 до 7 пока все байты сообщения не обработаются.
- 9. Конечное содержимое регистра и будет значением контрольной суммы.

Когда CRC размещается в конце сообщения, младший байт CRC передается первым.

Приложение В.4 Формат команд

Чтение нескольких регистров. Read Multiple Register (03)

Следующий формат используется для передачи запросов от компьютера и ответов от удаленного устройства.

Запрос устройству SENT TO DEVICE:

	DEVICE	FUNCTION	D.	ATA	CRC
	ADDRESS	CODE 03	STARTING REGISTERS	NUMBER OF REGISTERS	
П	1 BYTE	1 BYTE	HB LB	HB LB	LB HB

Ответ устройства. RETURNED FROM DEVICE:

DEVICE	FUNCTION		DATA			
ADDRESS	CODE 03	NUMBER OF BYTES	FIRST REGISTER		N REGISTER	
1 BYTE	1 BYTE	1 BYTE	HB LB		HB LB	LB HB

Где «NUMBER OF REGISTERS» и п ≤16 – количество запрашиваемых регистров. Если в кадре запроса заказано более 16 регистров, регулятор МИК-122 в ответе ограничивает их количество до первых 16-ти регистров.

Пример 1:

1. Чтение регистра

Запрос устройству. SENT TO DEVICE: Address 1, Read (03) register 1 (Setpoint)

DEVICE	FUNCTION	D.	ATA	CRC
ADDRESS	CODE	STARTING REGISTERS	NUMBER OF REGISTERS	
01	03	00 01	00 01	D5 CA

Ответ устройства. RETURNED FROM DEVICE: Setpoint set to 100.0

DEVICE ADDRESS	FUNCTION CODE	NUMBER OF BYTES	VALUE OF REGISTERS	CRC
01	03	02	03 E8	B8 FA

03E8 Hex = 1000 Dec

2. Запись в регистр

Следующая команда записывает определенное значение в регистр. Write to Single Register (06)

Запрос и ответ устройства. Sent to/Return from device :

DEVICE	FUNCTION	D.	ATA	CRC
ADDRESS	CODE 06	REGISTER	DATA/ VALUE	
1 BYTE	1 BYTE	HB LB	HB LB	LB HB

Пример 2:

Установить время дифференцирования регулятора 74 секунды в устройстве с адресом 20. Set Td to 74 sec (004A Hex) on Device address 20.

Запрос устройству. SEND TO DEVICE: Address 20 (Hex 14), write (06) to register 8, data 4A

DEVICE	FUNCTION	D.	CRC	
ADDRESS	CODE	REGISTER	DATA/ VALUE	
14	06	00 08	00 4A	8B 3A

Ответ устройства. RETURNED FROM DEVICE:

DEVICE	FUNCTION	D	ATA	CRC
ADDRESS	CODE	REGISTER	DATA/ VALUE	
14	06	00 08	00 4A	8B 3A

Приложение В.5 Рекомендации по программированию обмена данными с регулятором МИК-122

В.5.1 При операциях ввода / вывода (с программным управлением DTR/RTS), необходимо удерживать сигнал DTR/RTS до окончания передачи кадра запроса. Для определения момента передачи последнего символа из буфера передачи СОМ порта рекомендуется использовать данную функцию: WaitForClearBuffer.

```
void WaitForClearBuf(void)
{
    byte Stat;

    __asm
    {
        a1:mov dx,0x3FD
            in al,dx
            test al,0x20
            jz a1
        a2:in al,dx
            test al,0x40
            jz a2
     }
}
```

В.5.2 Кадр ответа от регулятора передается регулятором с задержкой 3 – 9 мс от момента принятия кадра запроса. Для ожидания кадра ответа не рекомендуется использовать WinApi: Sleep(), а использовать OVERLAPPED структуру и определять получение ответа от регулятора следующим кодом:

TimeOut – таймаут на получение ответа.

- В.5.3 После передачи кадра ответа регулятору необходима пауза =1мс для переключения в режим приема. Для ожидания также не рекомендуется использовать функцию WinApi Sleep().
 - В.5.4 Пример расчета контрольной суммы на языке СИ:

```
unsigned int crc calculation (unsigned char *buff, unsigned char number byte)
 unsigned int crc;
 unsigned char bit counter;
 crc = 0xFFFF;
                                                        // initialize crc
 while ( number_byte>0 )
         crc ^= *buff++ ;
                                              // crc XOR with data
         bit counter=0;
                                              // reset counter
         while (bit_counter < 8)
                if (crc & 0x0001)
                                     // shift to the right 1 position
                   crc >>= 1;
                   crc ^= 0xA001; // crc XOR with 0xA001
                 else
                    crc >>=1;
                                     // shift to the right 1 position
         bit counter++;
                                              // increase counter
    number byte--;
                                                       // adjust byte counter
 return (crc);
                                                        // final result of crc
```

Приложение Г - Сводная таблица параметров регулятора МИК-122

Таблица Г.1 - Сводная таблица параметров регулятора МИК-122

Пункт меню	ца Г.1 - Сводная таблица п	Еди- ницы изме- рения	Диапазон изменения параметра	Значен. по умол- чанию	Шаг изме- нения	Раз- дел	Примечание
	PID (F	ਾਰ) H a	астройка коэффицие	нтов ПИД	регуля	тора	
00	Коэффициент усиления регулятора (контур 1)	ед.	От 000,1 до 050,0	001,0	000,1		
01	Время интегрирования регулятора (контур 1)	сек.	От 0000 до 6000	0600	0001		0000 – откл.
02	Время дифференцирования регулятора (контур 1)	сек.	От 0000 до 6000	0000	0001		0000 — откл.
03	Коэффициент усиления регулятора (контур 2)	ед.	От 000,1 до 050,0	001,0	000,1		
04	Время интегрирования регулятора (контур 2)	сек.	От 0000 до 6000	0600	0001		0000 – откл.
05	Время дифференцирования регулятора (контур 2)	сек.	От 0000 до 6000	0000	0001		0000 – откл.
	AIN1(∄ +□ -¹) Ha	астрой	ка параметров блока	преобра	зования	я анал	огового
			входного сигнал	ıa Al1			
00	Тип аналогового входа		0000 — интерфейсный ввод 0001 — линейный 0002 — квадратический 0003 — TCM 50М 0004 — TCM 100М 0005 — гр. 23 0006 — TCП 100П, Pt100 0008 — гр. 21 0009 — линеаризованная шкала 0010 — Термопара линеаризированая 0011 — Термопара ТЖК (J) 0012 — Термопара ТЖК (L) 0013 — Термопара ТХК (E) 0014 — Термопара ТХК (E) 0015 — Термопара ТПП10 (S) 0016 — Термопара ТПП10 (S) 0016 — Термопара ТПП10 (S) 0017 — Термопара ТПП (B) 0017 — Термопара ТВР (A-1)	0000	0001		
01	Нижний предел размаха шкалы	техн. ед.	От минус 9999 до 9999	0,000	000,1		
02	Верхний предел размаха шкалы	техн. ед.	От минус 9999 до 9999	100,0	000,1		Если п.00 выбран в диапазоне 0006-0008,
03	Положение децимального разделителя		0000 000,1 00,02 0,003				- 0011-0017 то значение этих пунктов изменить нельзя.
04	Постоянная времени цифрового фильтра	сек.	От 000,0 до 060,0	0,000	000,1		000,0 – откл.
05	Максимальная длительность импульсной помехи	сек.	От 000,0 до 005,0	0,000	000,1		Защита от импульсных помех
06	Количество участков линеаризации входа AI		От 0000 до 0019	0000	0001		
07	Метод температурной коррекции входных сигналов от термопар		0000 – ручная коррекция 0001 – автоматическая коррекция	0001	0001		Т=Тизм+Ткор.руч (см.АІN.08) Т=Тизм+Ткор.авт
08	Значение температуры в режиме ручной коррекции входных сигналов от термопар	техн. ед.	От минус 099,9 до 999,9	000,0	000,1		Ткор.руч При AIN.07=0000
09	Минимальное значение входного сигнала АЦП	Код АЦП	От 1.000 до 22.00				Только контроль
10	Максимальное значение входного сигнала АЦП	Код АЦП	От 1.000 до 22.00				Только контроль
11	Контроль смещения аналогового входа	техн. ед.	От минус 999,9 до 999,9	0,000	000,1		Индуцирует значение параметра CORR.01

Пункт меню	Параметр	Еди- ницы изме- рения	пица параметров регулятора Диапазон изменения параметра	Знач. по умол- чанию	Шаг изме- нения	Раз- дел	Примечание
	AIN2(☐ → □ ፫)Ha	строй	ка параметров блока входного сигнал	преобра: на ΔI2	зования	і анал	огового
00	Параметры уровня AIN2 аналогичны парамет- рам уровня AIN1		входного отпал	NA AIZ			См. параметры уровня AIN1
	AOT1 (^円	o E 1)	Конфигурация функ	ции ретра	нсмисс	ии АО	1
00	Источник аналогового сигнала для управления аналоговым выходом AO1	0000 — вход Al1 0001 — вход Al2 0002 — рассогласование регулятора 1 (50%+E) 0003 — текущее задание регулятора 1 0004 — рассогласование регулятора 2 (50%+E) 0005 — текущее задание регулятора 2	0001	3.7	Отклонение вычисляется по формуле: PV-SP+(ВПШ-НПШ)/2, где ВПШ и НПШ соответственно верхний и нижний предел шкалы.		
01	Направление выходного сигнала AO1		0000 – прямое 0001 – обратное				0000 – AO=y 0001 – AO=100%-y
02	Начальное значение входного сигнала равное 0% выходного сигнала	техн. ед.	От минус 999,9 до 999,9	000,0	000,1		С учетом децимального разделителя.
03	Конечное значение входного сигнала равное 100% выходного сигнала	техн. ед.	От минус 999,9 до 999,9	0,000	000,1		С учетом децимального разделителя.
	aot2 ($ epsilon$	o Ł 2)	Конфигурация функ	ции ретра	нсмисс	ии АО	2
00	Источник аналогового сигнала для управления аналоговым выходом AO2		0000 – вход AI1 0001 – вход AI2 0002 – рассогласование регулятора 1 (50%+E) 0003 – текущее задание регулятора 1 0004 – рассогласование регулятора 2 (50%+E) 0005 – текущее задание регулятора 2	0000	0001	3.7	Отклонение вычисляется по формуле: PV-SP+(ВПШ-НПШ)/2, где ВПШ и НПШ соответственно верхний и нижний предел шкалы.
01	Направление выходного сигнала AO2		0000 – прямое 0001 – обратное				0000 – AO=y 0001 – AO=100%-y
02	Начальное значение входного сигнала равное 0% выходного сигнала	техн. ед.	От минус 999,9 до 999,9	000,0	000,1		С учетом децимального разделителя.
03	Конечное значение входного сигнала равное 100% выходного сигнала	техн. ед.	От минус 999,9 до 999,9	000,0	000,1		С учетом децимального разделителя.
	D	IN (🗗 🗆	⊓) Конфигурация ди	скретных	входов	}	
00	Назначение дискретного входа DI1		0000 — вход не исп. 0001 0002 0003 0004 0005 0006 0007	0000	0001		
01	Назначение дискретного входа DI2		Аналогично входу DI1	0000	0001		
02	Индикация состояния дискретных входов DI1 и DI2 на дисплее ПАРАМЕТР*1		0 0 1 0 \ \Вход DI1 \Вход DI2				1 – соответствует включенному входу, т.е. на вход подано напряжение 24В

Пункт меню	Параметр	Еди- ницы изме- рения	Диапазон изменения параметра	Знач. по умол- чанию	Шаг изме- нения	Раз- дел	Примечание
	DOT1 (1	dot 1)	Конфигурация выхо	дного ус	тройств	a DO1	
00	Логика работы выходного устройства DO1		0000 — интерфейсный вывод 0001 — больше MAX 0002 — меньше MIN 0003 - в зоне MIN-MAX 0004 - вне зоны MIN-MAX (относительно MIN- MAX соответствующего DO) 0005 — обобщенная сигнализация 0006 — не используется, выход откл	0000	0001		(относительно MIN— МАХ соответствующего DO); ————————————————————————————————————
01	Источник аналогового сигнала для правления дискретным выходом DO1		0000 – вход AI1 0001 – вход AI2	0000	0001		
02	Длительность импульса выходного устройства DO1	сек.	От 000,0 до 999,9	0,000	000,1		000,0 - статический 000,1-999,9 - импульсный (динамический)
03	Уставка MIN DO1	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	010,0	000,1		С учетом децим. разделителя измеряемой величины
04	Уставка MAX DO1	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	020,0	000,1		С учетом децим. разделителя измеряемой величины
05	Гистерезис выходного устройства DO1	техн. ед.	-999,9 – 999,9	0,000	000,1		С учетом децим. разделителя измеряемой величины
06	Безопасное положение выходного устройства DO1 в случае отказа датчика, линии связи или измерительного параметра		0000 – последнее положение 0001 – откл. 0002 – вкл.	0000	0001		
	DOT2 (a	d o E 2)	Конфигурация выхо	дного ус	тройств	a DO2	
00 06	Параметры уровня DOT2 аналогичны параметрам уровня DOT1						См. параметры уровня DOT1
		10E3) Конфигурация выхо	дного vc	тройств	a DO3	L
00 06	Параметры уровня DOT3 аналогичны параметрам уровня DOT1		, ,, , , =				См. параметры уровня DOT1
	DOT4 (a	3 o E 4) Конфигурация выхо	дного ус	тройств	a DO4	ı
00 06	Параметры уровня DOT4 аналогичны параметрам уровня DOT1			-			См. параметры уровня DOT1

Пункт меню	Параметр	Еди- ницы изме- рения	пица параметров регулятора Диапазон изменения параметра	Знач. по умол- чанию	Шаг изме- нения	Раз- дел	Примечание
	ctr1 ([E	г I) К	онфигурация структ	уры регул	ятора к	онтура	1
00	Тип регулятора		0000 — индикатор 0001 — 2-х позиционный 0002 — 3-х позиционный 0003 — ПИД-ШИМ 0004 — ПИД-аналоговый 0005 — ПИД-импульсный	0004	0001	3.7	
01	Регуляторы в режиме "override"		0000 – режим "override выключен 0001 –"override" по MIN 0002 –"override" по MAX				См. примечание ниже
02	Тип управления регулятора		0000 – обратное 0001 – прямое	0000	0001		E = SP – PV E = PV – SP
03	Скорость динамической балансировки задания	техн. ед./мин	000,0 - 999,9	090,0	000,1	4.6.2.7	0 - откл. С учетом дец. разделителя
04	Зона нечувствительности 3-х позиционного регулятора (Мертвая зона)	техн. ед.	000,0 – 999,9	000.0	000,1	3.10	Данный параметр представляет половинное значение зоны. С учетом децим. разделителя PV
05	Время механизма Тм или период ПИД-ШИМ	сек.	000,0 – 999,9	010,0	000,1		Для импульсного и ШИМ регулятора
06	Минимальная длительность импульса Тмин	сек.	000,0 – 999,9	000,1	000,1		Для импульсного регулятора
07	Задержка на включение DO в противоположном направлении	сек.	000,1 - 060,0	000,1	000,1	3. 8	Для импульсного регулятора
08	Гистерезис 2-х, 3-х позиционного регулятора	техн. ед.	0000 – 0900	0,000	000,1	3. 8	С учетом децим. разделителя PV
09	Ограничение МИН аналоговой ячейки регулятора	%	0000 – 099,9	0,000	000,1		Для ПИД – аналогового и ПИД – ШИМ регулятора.
10	Ограничение МАКС аналоговой ячейки регулятора	%	0000 – 099,9	099,9	000,1		
11	Разрешение ограничения выхода (в РУЧНОМ режиме)		0000 - в АВТ режиме 0001 - в АВТ и РУЧ	0000	0001		
12	Безопасное положение выхода регулятора в случае отказа датчика, линии связи или измерительного параметра		0000 – последнее положение 0001 – 0% (откл.) 0002 – 100% (вкл.) 0003 – безопасное положение устанавлива- емое пользователем	0003	0001		
13	Значение безопасного положения устанавливаемого пользователем	%	-9,9 – 109,9	055,5	000,1		
14	Тип технологической сигнализации		0000 – абсолютная 0001 – девиационная	0000	0001	3. 9	
15	Уставка "минимум" технологической сигнализации	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	040,0	000,1	3. 9	С учетом децим. разделителя PV
16	Уставка "максимум" технологической сигнализации	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	060,0	000,1	3. 9	С учетом децим. разделителя PV
17	Гистерезис технологической сигнализации	техн. ед.	000,0 - 090,0	000,5	000,1	3. 9	С учетом децим. разделителя PV
18	Назначение дискретного входа DI1		0000 – 0008	0000	0001		См. примечание
19	Назначение дискретного входа DI2		Аналогично входу DI1	0000	0001		См. примечание

Пункт меню	Параметр	Еди- ницы изме- рения	пица параметров регулятора Диапазон изменения параметра	Знач. по умол- чанию	Шаг изме- нения	Раз- дел	Примечание
	CTR2 ([r ⊇) K	онфигурация структу	ры регул	ятора к	онтура	2
00	Тип регулятора		0000 — индикатор 0001 — 2-х позиционный 0002 — 3-х позиционный 0003 — ПИД-ШИМ 0004 — ПИД-аналоговый 0005 — ПИД-импульсный	0004	0001	3.7	
01	Регуляторы в режиме "override"		0000 – режим "override выключен 0001 –"override" по MIN 0002 –"override" по MAX				См. примечание ниже
02	Тип управления регулятора		0000 – обратное 0001 – прямое	0000	0001		E = SP – PV E = PV – SP
03	Скорость динамической балансировки задания	техн. ед./мин	000,0 - 999,9	090,0	000,1	4.6.2.7	0 - откл. С учетом дец. разделителя
04	Зона нечувствительности 3-х позиционного регулятора (Мертвая зона)	техн. ед.	000,0 – 999,9	000.0	000,1	3.10	Данный параметр представляет половинное значение зоны. С учетом децим. разделителя PV
05	Время механизма Тм или период ПИД-ШИМ	сек.	000,0 - 999,9	010,0	000,1		Для импульсного и ШИМ регулятора
06	Минимальная длительность импульса Тмин	сек.	000,0 - 999,9	000,1	000,1		Для импульсного регулятора
07	Задержка на включение DO в противоположном направлении	сек.	000,1 - 060,0	000,1	000,1	3. 8	Для импульсного регулятора
08	Гистерезис 2-х, 3-х позиционного регулятора	техн. ед.	0000 – 0900	0,000	000,1	3. 8	С учетом децим. разделителя PV
09	Ограничение МИН аналоговой ячейки регулятора	%	0000 – 099,9	0,000	000,1		Для ПИД – аналогового и ПИД – ШИМ регулятора.
10	Ограничение МАКС аналоговой ячейки регулятора	%	0000 – 099,9	099,9	000,1		
11	Разрешение ограничения выхода (в РУЧНОМ режиме)		0000 - в АВТ режиме 0001 - в АВТ и РУЧ	0000	0001		
12	Безопасное положение выхода регулятора в случае отказа датчика, линии связи или измерительного параметра		0000 – последнее положение 0001 – 0% (откл.) 0002 – 100% (вкл.) 0003 – безопасное положение устанавлива- емое пользователем	0003	0001		
13	Значение безопасного положения устанавливаемого пользователем	%	-9,9 – 109,9	055,5	000,1		
14	Тип технологической сигнализации		0000 – абсолютная 0001 – девиационная	0000	0001	3. 9	
15	Уставка "минимум" технологической сигнализации	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	040,0	000,1	3. 9	С учетом децим. разделителя PV
16	Уставка "максимум" технологической сигнализации	техн. ед.	В диапазоне шкалы выбранного типа аналогового сигнала	060,0	000,1	3. 9	С учетом децим. разделителя PV
17	Гистерезис технологической сигнализации	техн. ед.	000,0 - 090,0	000,5	000,1	3. 9	С учетом децим. разделителя PV
18	Назначение дискретного входа DI1		0000 – 0008	0000	0001		См. примечание
19	Назначение дискретного входа DI2		Аналогично входу DI1	0000	0001		См. примечание

Примечания к уровням CTR1(01) CTR2(01)

Примечание. Принцип работы регулятора МИК-122 в режиме "OVERRIDE"

В управлении с ограничением два регулятора работают параллельно, главный регулятор (канал 1) и регулятор ограничения (канал 2) работают на общий исполнительный механизм. Главный регулятор всегда управляет процессом, а регулятор ограничения может ограничивать значение выходной ячейки регулятора своим выходом. Регулятор ограничения может работать в режиме ограничения выхода главного регулятора по минимуму или по максимуму.

Пример. Допустим для регулятора канала 2 (регулятора ограничения) установлена заданная точка больше значения параметра (при обратной логике работы) тогда на выходе регулятора канала 2 будет 0% выходного сигнала.

При выбранном регуляторе override с ограничением по минимуму, это будет означать что выходная ячейка ПИД регулятора канала 1 будет ограничена по минимуму значением выхода регулятора канала 2, то есть 0%.

Когда по какой то причине значение параметра канала 2 превысит значение заданной точки, то есть рассогласование изменит свой знак, то значение выхода регулятора канала 2 начнет возрастать (изменяться) согласно установленному закону регулирования и ограничивать значение выходной ячейки регулятора канала 1 по минимальному значению (смотри рисунок Г.1).

Аналогично работает override регулятор в режиме ограничения по максимуму (см. рисунок Г.2).

Рисунок Г.1 - График работы override регулятора в режиме ограничения по максимуму

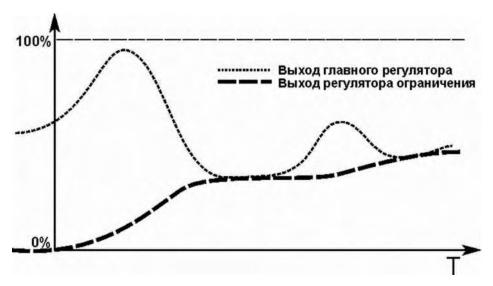


Рисунок Г.2 - График работы override регулятора в режиме ограничения по минимуму

Пункт меню	Параметр	Еди- ницы изме- рения	Диапазон изменения параметра	Знач. по умол- чанию	Шаг изме- нения	Раз- дел	Примечание
	LNX1 (L n u) Абсц	иссы (X) опорных то	учек линеа	аризаци	и вход	a Al1
00	Абсцисса начального значения (в % от входного сигнала)	%	00,00 – 99,99		00,01	5.2	
						-//-	
19	Абсцисса 19 точки	%	00,00 - 99,99		00,01	-//-	
	LNY1 (Ln 🖰) Орди	інаты (У) опорных то	учек лине	аризаци	и вход	a Al1
00	Ордината начального значения (сигнал в технических единицах от -9999 до 9999)	техн. ед.	-9999 до 9999	0000	000,1	5.2	
	, , , , , , , , , , , , , , , , , , , ,					-//-	
19	Ордината 19 точки техн. ед.		-9999 до 9999	0000	000,1	-//-	
	LNX2 (Lnuc) Абсц	иссы (Х) опорных то	чек лине	аризаци	и вход	a Al2
00	Абсцисса начального значения (в % от входного сигнала)	%	00,00 – 99,99		00,01	5.2	
	,					-//-	
19	Абсцисса 19 точки	%	00,00 - 99,99		00,01	-//-	
	LNY2 (Ln 4c) Орди	інаты (У) опорных то	чек линеа	аризаци	и вход	a Al2
00	Ордината начального значения (сигнал в технических единицах от -9999 до 9999)	техн. ед.	-9999 до 9999	0000	000,1	5.2	
	,					-//-	
19	Ордината 19 точки	техн. ед.	-9999 до 9999	0000	000,1	-//-	
	CL	11 (E L	🕕) Калибровка ана	погового	входа А	I 1	
ıL	Контроль входного сигнала	%	-5,0 до 25,0	0,000	000,1	5.1	Только контроль
ΣL	Калибровка нижнего придела шкалы измерения	техн. ед.	-9999 до 9999	0000	000,1	-//-	
Н	Контроль входного сигнала	%	90,0 до 110,0	100,0	000,1	-//-	Только контроль
ΞН	Калибровка верхнего пердела шкалы измерения	техн. ед.	-9999 до 9999	0000	000,1	-//-	
	Контроль результатов калибровки нижнего придела шкалы измерения	код АЦП	1,400 до 5,000	1,700	000,1	-//-	Только контроль
Н	Контроль результатов калибровки конечного значения шкалы измерения	код АЦП	4,800 до 22,00	10,00	000,1	-//-	Только контроль
	CO	R1 ([[⊃┌ /) Коррекция анал	погового	входа А	<u>I</u> 1	
00	Коррекция аналогового входа	техн. ед.	-9999 – 9999	0000	000,1		Индицирует PV=PV+∆
01	Коэффициент коррекции (смещение) аналогового входа	техн. ед.	-9999 — 9999	0000	000,1		Индицирует Δ

Пункт меню	Параметр	Еди- ницы изме- рения	пица параметров регулятора Диапазон изменения параметра	Значен. по умол- чанию	Шаг изме- нения	Раз- дел	Примечание
	CL	12 ([L	교물) Калибровка анал	огового і	зхода А	12	
ıL	Контроль входного сигнала	%	-5,0 до 25,0	0,000	000,1	5.1	Только контроль
ΕL	Калибровка нижнего придела шкалы измерения	техн. ед.	-9999 до 9999	0000	000,1	-//-	
ıН	Контроль входного сигнала	%	90,0 до 110,0	100,0	000,1	-//-	Только контроль
ΕН	Калибровка верхнего пердела шкалы измерения	техн. ед.	-9999 до 9999	0000	000,1	-//-	
L	Контроль результатов калибровки нижнего придела шкалы измерения	код АЦП	1,400 до 5,000	1,700	000,1	-//-	Только контроль
Н	Контроль результатов калибровки конечного значения шкалы измерения	код АЦП	4,800 до 22,00	10,00	000,1	-//-	Только контроль
	CO	R2 ([□	⊃ ┌ टे) Коррекция анал	огового і	зхода А	12	
00	Коррекция аналогового входа	техн. ед.	-9999 – 9999	0000	000,1		Индицирует PV=PV+Δ
01	Коэффициент коррекции (смещение) аналогового входа	техн. ед.	-9999 – 9999	0000	000,1		Индицирует Δ
	CLO1	(CLc	ो) Калибровка анал	огового в	ыхода	AO1	
00	Индикация и изменение состояния аналогового выхода	%	0 - 100			5.3	
01	Калибровка минимума аналогового выхода					5.3	
02	Калибровка максимума аналогового выхода					5.3	
		(CLc	□ ⊂) Калибровка анал	огового в	ыхода	AO2	
00	Индикация и изменение состояния аналогового выхода	%	0 - 100			5.3	
01	Калибровка минимума аналогового выхода					5.3	
02	Калибровка максимума					5.3	
	аналогового выхода		SYS (5 ½ 5) Общие па	раметры			
00	Сетевой адрес (номер		0000 – 0255	0000	0001	1. 3.6	0000 – отключен от
01	регулятора в сети) Скорость обмена	бит/с	0000 - 0233 0000 - 2400 0001 - 4800 0002 - 9600 0003 - 14400 0004 - 19200 0005 - 28800 0006 - 38400 0007 - 57600 0008 - 76800 0009 - 115200 0010 - 230400 0011 - 460800 0012 - 921600	0004	0001	1. 3.6	сети
02	Тайм-аут кадра запроса в системных тактах 1 такт = 250 мкс		0001 – 0200	0006	0001	В	
03	Код регулятора. Версия программного обеспечения			02.xx			Служебная информация Код 02 Версия хх (напр. 02.06)

Пункт меню	Параметр	Еди- ницы изме- рения	Диапазон изменения параметра	Значен. по умол- чанию	Шаг изме- нения	Раз- дел	Примечание					
	SYS (5 월 5) Общие параметры											
04	Разрешения на индикацию параметра PV2		0 – не разрешено 1 – PV2 2 – PV2 и DI/DO									
05	Индикация по умолчанию		0 – не используется 1 – PV1/PV2 2 – регулятор I 3 – регулятор II									
06	Коррекция показаний датчика термокомпенсации					5. 1.6						
		SAV	Е (5 Я и Е) Сохранени	е парамет	ров							
00	Служебная информация											
01	Запись параметров в энергонезависимую память(настройки пользователя)		0000 0001 – записать			4. 7.5						
		LO	AD (└ ㅁ뮈៨) Загрузка	параметр	ОВ							
00	Разрешение программирования по сети ModBus		0000 0001 – разрешено									
01	Загрузка настроек пользователя		0000 0001 – загрузить			4. 7.5						
02	Загрузка заводских настроек		0000 0001 – загрузить			4. 8						

Лист регистрации изменений

Изм.	Номера листов (страниц)		Всего № листов в документ		Входящий № сопровождаю- щего документа и дата	Подп.	Дата	
	Изме- ненных	Заме- ненных	Новых	документе	а	щего документа и дата		
1.00 1.01	69			69 70	ver 02.01 ver 02.01	Приведен в соответствие рисунок Б.2	КВМ Лукащук Р.О	15.03.2012 23.08.12
1.02	69			69	ver 02.01	Приведен в соответствие	CBM	04.09.2012
1.03				67	ver 02.06	схемы подключения Приведен в соответствие с новой прошивкой	Сопуляк В.М.	08.02.2013
1.04				67	ver 02.08	Приведен в соответствие с новой прошивкой	Сопуляк В.М.	26.09.2013
1.05				66	ver 02.09	Приведен в соответствие с новой прошивкой	Марикот Д.Я.	11.04.2014